2个回答
展开全部
解答:
且P与椭圆长轴两顶点连线的斜率之积为-1/2
设P(x,y),则x²/a²+y²/b²=1, 即y²=b²*(1-x²/a²)=(b²/a²)(a²-x²) ①
两个长轴顶点是A(-a,0),B(a,0)
∴ [y/(x+a)] *[y/(x-a)]=-1/2
y²=(-1/2)(x²-a²) ②
由①②
∴ (b²/a²)(a²-x²)=(-1/2)(x²-a²)
∴ b²/a²=1/2
即 a²=2b²=2(a²-c²)
∴ a²=2c²
∴ a=√2 c
∴ 离心率e=c/a=√2/2
且P与椭圆长轴两顶点连线的斜率之积为-1/2
设P(x,y),则x²/a²+y²/b²=1, 即y²=b²*(1-x²/a²)=(b²/a²)(a²-x²) ①
两个长轴顶点是A(-a,0),B(a,0)
∴ [y/(x+a)] *[y/(x-a)]=-1/2
y²=(-1/2)(x²-a²) ②
由①②
∴ (b²/a²)(a²-x²)=(-1/2)(x²-a²)
∴ b²/a²=1/2
即 a²=2b²=2(a²-c²)
∴ a²=2c²
∴ a=√2 c
∴ 离心率e=c/a=√2/2
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询