求函数y=2cosxsinx(x+π/3)-根号3sin^2x+sinxcosx的周期,最值和单调区间
2个回答
展开全部
y=2cosxsinx(x+π/3)-根号3sin^2x+sinxcosx
=2cosx[1/2*sinx+√3/2*cosx]-√3sin^2x+sinxcosx
=sinxcosx+√3cos^2x-√3sin^2x+sinxcosx
=2sinxcosx+√3[cos^2x-sin^2x]
=sin2x+√3cos2x
=2(1/2sin2x+√3/2*cos2x)
=2sin(2x+π/3)
周期:π
最值:±2
单调区间:[-5π/12+2kπ,π/12+2kπ] 单调增
(π/12+2kπ,7π/12+2kπ])单调减
=2cosx[1/2*sinx+√3/2*cosx]-√3sin^2x+sinxcosx
=sinxcosx+√3cos^2x-√3sin^2x+sinxcosx
=2sinxcosx+√3[cos^2x-sin^2x]
=sin2x+√3cos2x
=2(1/2sin2x+√3/2*cos2x)
=2sin(2x+π/3)
周期:π
最值:±2
单调区间:[-5π/12+2kπ,π/12+2kπ] 单调增
(π/12+2kπ,7π/12+2kπ])单调减
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询