设f(x)在[0,+∞)上连续,单调减少,0〈a〈b,求证a∫(0,b)f(x)dx≤b∫(0,a)f(x)dx

wingwf2000
2012-12-19 · TA获得超过1万个赞
知道大有可为答主
回答量:5889
采纳率:33%
帮助的人:1682万
展开全部
a∫(0,b)f(x)dx≤b∫(0,a)f(x)dx
则[∫(0,b)f(x)dx]/b≤[∫(0,a)f(x)dx]/a
由于设f(x)在[0,+∞)上连续,单调减少,0〈a〈b,上面不等式直观意义就是平均值越来越小
设F(x)=[∫(0,x)f(t)dt]/x
则只需证明F(x)单调下降即可
F'(x)=(xf(x)-∫(0,x)f(t)dt)/x*x=(∫(0,x)(f(x)-f(t))dt)/x*x<=0,注意当t属于(0,x)时f(x)<=f(t)
所以。。。。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式