已知过点M(0,2)的直线与抛物线y²=4x交于A,B两点,
3个回答
展开全部
(1)设直线AB的方程为y=kx+2(k≠0),A(x1,y1),B(x2,y2),由
y2=4xy=kx+2
,得k2x2+(4k-4)x+4=0,由△=(4k-4)2-16k2>0,得k<
12
,由x1+x2=-
4k-4k2
=
4-4kk2
,x1x2=
4k2
,知y1y2=(kx1+2)(kx2+2)=
8k
,由以AB为直径的圆经过原点O,能求出直线l的方程.
(2)设线段AB的中点坐标为(x0,y0),由x0=
x1+x22
=
2-2kk2
,得y0=kx0+2=
2k
,故线段AB的中垂线方程为y-
2k
=-
1k
(x-
2-2kk2
),由此能求出△POQ面积的取值范围.
解:(1)设直线AB的方程为y=kx+2(k≠0),
设A(x1,y1),B(x2,y2),
由
y2=4xy=kx+2
,得k2x2+(4k-4)x+4=0,
则由△=(4k-4)2-16k2=-32k+16>0,得k<
12
,
x1+x2=-
4k-4k2
=
4-4kk2
,x1x2=
4k2
,
所以y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=
8k
,
因为以AB为直径的圆经过原点O,
所以∠AOB=90°,
即
OA
•
OB
=0,
所以
OA
•
OB
=x1x2+y1y2=
4k2
+
8k
=0,
解得k=-
12
,
即所求直线l的方程为y=-
12
x+2.
(2)设线段AB的中点坐标为(x0,y0),
则由(1)得x0=
x1+x22
=
2-2kk2
,y0=kx0+2=
2k
,
所以线段AB的中垂线方程为y-
2k
=-
1k
(x-
2-2kk2
),
令y=0,得xQ=2+
2-2kk2
=
2k2
-
2k
+2=2(
1k
-
12
)2+
32
,
又由(1)知k<
12
,且k≠0,得
1k
<0或
1k
>2,
所以xQ>2(0-
12
)2+
32
=2,
所以S△POQ=
12
|PO|•|OQ|=
12
×2×|xQ| >2,
所以△POQ面积的取值范围为(2,+∞).
够详细了吧,求采纳
y2=4xy=kx+2
,得k2x2+(4k-4)x+4=0,由△=(4k-4)2-16k2>0,得k<
12
,由x1+x2=-
4k-4k2
=
4-4kk2
,x1x2=
4k2
,知y1y2=(kx1+2)(kx2+2)=
8k
,由以AB为直径的圆经过原点O,能求出直线l的方程.
(2)设线段AB的中点坐标为(x0,y0),由x0=
x1+x22
=
2-2kk2
,得y0=kx0+2=
2k
,故线段AB的中垂线方程为y-
2k
=-
1k
(x-
2-2kk2
),由此能求出△POQ面积的取值范围.
解:(1)设直线AB的方程为y=kx+2(k≠0),
设A(x1,y1),B(x2,y2),
由
y2=4xy=kx+2
,得k2x2+(4k-4)x+4=0,
则由△=(4k-4)2-16k2=-32k+16>0,得k<
12
,
x1+x2=-
4k-4k2
=
4-4kk2
,x1x2=
4k2
,
所以y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=
8k
,
因为以AB为直径的圆经过原点O,
所以∠AOB=90°,
即
OA
•
OB
=0,
所以
OA
•
OB
=x1x2+y1y2=
4k2
+
8k
=0,
解得k=-
12
,
即所求直线l的方程为y=-
12
x+2.
(2)设线段AB的中点坐标为(x0,y0),
则由(1)得x0=
x1+x22
=
2-2kk2
,y0=kx0+2=
2k
,
所以线段AB的中垂线方程为y-
2k
=-
1k
(x-
2-2kk2
),
令y=0,得xQ=2+
2-2kk2
=
2k2
-
2k
+2=2(
1k
-
12
)2+
32
,
又由(1)知k<
12
,且k≠0,得
1k
<0或
1k
>2,
所以xQ>2(0-
12
)2+
32
=2,
所以S△POQ=
12
|PO|•|OQ|=
12
×2×|xQ| >2,
所以△POQ面积的取值范围为(2,+∞).
够详细了吧,求采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
直线与y轴重合时,与抛物线只有一个交点,不满足题意,因此直线不与y轴重合。
设直线方程y-2=k(x-0) (k≠0),整理,得y=kx+2,代入抛物线方程
(kx+2)²=4x,整理,得
k²x²+4(k-1)x+4=0
方程有两不相等的实根,判别式>0
16(k-1)²-16k²>0
2k-1<0
k<1/2
设点A(xa,kxa+2),点B(xb,kxb+2)
由韦达定理得
xa+xb=-4(k-1)/k²
xa·xb=4/k²
圆以AB为直径,过原点,则直线OA⊥OB,两直线斜率互为负倒数。
[(kxa+2)/xa][(kxb+2)/xb]=-1
整理,得
2k+1=0
k=-1/2
直线方程为y=(-1/2)x +2。
直线与y轴重合时,与抛物线只有一个交点,不满足题意,因此直线不与y轴重合。
设直线方程y-2=k(x-0) (k≠0),整理,得y=kx+2,代入抛物线方程
(kx+2)²=4x,整理,得
k²x²+4(k-1)x+4=0
方程有两不相等的实根,判别式>0
16(k-1)²-16k²>0
2k-1<0
k<1/2
设点A(xa,kxa+2),点B(xb,kxb+2)
由韦达定理得
xa+xb=-4(k-1)/k²
xa·xb=4/k²
圆以AB为直径,过原点,则直线OA⊥OB,两直线斜率互为负倒数。
[(kxa+2)/xa][(kxb+2)/xb]=-1
整理,得
2k+1=0
k=-1/2
直线方程为y=(-1/2)x +2。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设A(x1,y1) B(x2,y2) AB为直径,O在圆上,所以∠AOB=90度,即OA OB垂直,
所以有x1x2+y1y2=0
设过M点的直线为y=kx+2
代入方程,由根与系数的关系知
x1+x2=(4-4k)/k∧2
x1x2=4/k∧2
y1y2=k∧2x1x2+2k(x1+x2)+4
代入化简可得k=-1/2
不懂再追问吧
所以有x1x2+y1y2=0
设过M点的直线为y=kx+2
代入方程,由根与系数的关系知
x1+x2=(4-4k)/k∧2
x1x2=4/k∧2
y1y2=k∧2x1x2+2k(x1+x2)+4
代入化简可得k=-1/2
不懂再追问吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询