求xsin^6xcos^4xdx从0到π的定积分
3个回答
展开全部
公式:∫[0→π] xf(sinx) dx = (π/2)∫[0→π] f(sinx) dx
∫[0→π] x(sinx)⁶(cosx)⁴ dx
由公式:
=(π/2)∫[0→π] (sinx)⁶(cosx)⁴ dx
=(π/2)∫[0→π/2] (sinx)⁶(cosx)⁴ dx + (π/2)∫[π/2→π] (sinx)⁶(cosx)⁴ dx
后一部分换元,令x=u+π/2,则dx=du,u:0→π/2
=(π/2)∫[0→π/2] (sinx)⁶(cosx)⁴ dx + (π/2)∫[0→π/2] (cosu)⁶(sinu)⁴ du
积分变量换回x
=(π/2)∫[0→π/2] (sinx)⁶(cosx)⁴ dx + (π/2)∫[0→π/2] (cosx)⁶(sinx)⁴ dx
=(π/2)∫[0→π/2] (sinx)⁴(cosx)⁴(sin²x+cos²x) dx
=(π/2)∫[0→π/2] (sinx)⁴(cosx)⁴dx
=(π/32)∫[0→π/2] (sin2x)⁴dx
=(π/32)∫[0→π/2] (1/4)(1-cos4x)² dx
=(π/128)∫[0→π/2] (1-2cos4x+cos²4x) dx
=(π/128)∫[0→π/2] [1-2cos4x+(1/2)(1+cos8x)] dx
=(π/128)∫[0→π/2] [3/2 - 2cos4x + cos8x] dx
=(π/128)(3/2)(π/2)
=3π²/512
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
∫[0→π] x(sinx)⁶(cosx)⁴ dx
由公式:
=(π/2)∫[0→π] (sinx)⁶(cosx)⁴ dx
=(π/2)∫[0→π/2] (sinx)⁶(cosx)⁴ dx + (π/2)∫[π/2→π] (sinx)⁶(cosx)⁴ dx
后一部分换元,令x=u+π/2,则dx=du,u:0→π/2
=(π/2)∫[0→π/2] (sinx)⁶(cosx)⁴ dx + (π/2)∫[0→π/2] (cosu)⁶(sinu)⁴ du
积分变量换回x
=(π/2)∫[0→π/2] (sinx)⁶(cosx)⁴ dx + (π/2)∫[0→π/2] (cosx)⁶(sinx)⁴ dx
=(π/2)∫[0→π/2] (sinx)⁴(cosx)⁴(sin²x+cos²x) dx
=(π/2)∫[0→π/2] (sinx)⁴(cosx)⁴dx
=(π/32)∫[0→π/2] (sin2x)⁴dx
=(π/32)∫[0→π/2] (1/4)(1-cos4x)² dx
=(π/128)∫[0→π/2] (1-2cos4x+cos²4x) dx
=(π/128)∫[0→π/2] [1-2cos4x+(1/2)(1+cos8x)] dx
=(π/128)∫[0→π/2] [3/2 - 2cos4x + cos8x] dx
=(π/128)(3/2)(π/2)
=3π²/512
【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个要用积化和差公式,原式=1/2(xsin10x+xsin2x),然后再分布积分,-xdcos10x-xdcos2x 缺系数你自己慢慢算可以了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询