一道高中解析几何问题
面积为1的△PMN中,tanPMN=1/2,tanMNP=2,建立适当坐标系,求过M,N为焦点,且过P点的椭圆方程。...
面积为1的△PMN中,tanPMN=1/2,tanMNP=2,建立适当坐标系,求过M,N为焦点,且过P点的椭圆方程。
展开
2012-12-21
展开全部
以MN所在直线为X轴,MN中垂线为Y轴,建立直角坐标系。
MN=2c PM+PN=2a
tan∠N=-2,∠N大于90°是钝角,先做PQ⊥MN
△MNP如图所示:
tan∠N=-2,则tan∠PNQ=2
设NQ=x,→PQ=2x,MQ=4x,MN=3x
PM=2√5x PN=√5x
S△MNP=0.5*MN*PQ=1
05*3x*2x=1
x=1/√3
2c=MN=3x=√3
c=√3/2
2a=PM+PN=3√5x=√15
a=√15/2
b^2=a^2-c^2=3
椭圆方程:x^2/(4/15)+y^2=1
MN=2c PM+PN=2a
tan∠N=-2,∠N大于90°是钝角,先做PQ⊥MN
△MNP如图所示:
tan∠N=-2,则tan∠PNQ=2
设NQ=x,→PQ=2x,MQ=4x,MN=3x
PM=2√5x PN=√5x
S△MNP=0.5*MN*PQ=1
05*3x*2x=1
x=1/√3
2c=MN=3x=√3
c=√3/2
2a=PM+PN=3√5x=√15
a=√15/2
b^2=a^2-c^2=3
椭圆方程:x^2/(4/15)+y^2=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询