2013-08-19
展开全部
设S=1×2+2×3+3×4+...+n(n+1)
1×2×3=1×2×3
2×3×3=2×3×(4-1)腔槐=2×3×4-1×2×3
3×4×3=3×4×(5-2)=3×4×5-2×3×4
n(n+1)×3=n(n+1)[(n+2)乱橘-(n-1)]=n(n+1)(n+2)-(n-1)n(n+1)
则3S=1×2×3+2×3×3+3×4×3+…+n(n+1)×3=n(n+1)(n+2)
S=哗圆团1×2+2×3+3×4+...+n(n+1)=n(n+1)(n+2)/3
当n=99时,S=99×100×101÷3=333300
1×2×3=1×2×3
2×3×3=2×3×(4-1)腔槐=2×3×4-1×2×3
3×4×3=3×4×(5-2)=3×4×5-2×3×4
n(n+1)×3=n(n+1)[(n+2)乱橘-(n-1)]=n(n+1)(n+2)-(n-1)n(n+1)
则3S=1×2×3+2×3×3+3×4×3+…+n(n+1)×3=n(n+1)(n+2)
S=哗圆团1×2+2×3+3×4+...+n(n+1)=n(n+1)(n+2)/3
当n=99时,S=99×100×101÷3=333300
展开全部
思路如下:
考虑通用性,研究一下1/[n(n+1)(n+2)]与1/n,1/(n+1),1/(n+2)的关系,可以知道下式成立:
1/[n(n+1)(n+2)]=1/2*[1/n+1/(n+2)]-1/(n+1),于是可以列出:
1/(1*2*3)=1/2(1+1/3)-1/2
1/(2*3*4)=1/2(1/2+1/4)-1/3
1/(3*4*5)=1/2(1/3+1/5)-1/4
1/(4*5*6)=1/2(1/4+1/6)-1/高告5
1/(5*6*7)=1/2(1/5+1/7)-1/6
......
1/(96*97*98)=1/2(1/96+1/98)-1/信念迅97
1/(97*98*99)=1/2(1/97+1/99)-1/98
1/(98*99*100)=1/2(1/98+1/100)-1/99
将滑此上面98个式子加起来,研究等式右侧前后项抵消的关系,可以得到,
=1/2*1/2+1/2*1/99+1/2*1/100-1/99
=9898/39600=4949/19800
=333300
考虑通用性,研究一下1/[n(n+1)(n+2)]与1/n,1/(n+1),1/(n+2)的关系,可以知道下式成立:
1/[n(n+1)(n+2)]=1/2*[1/n+1/(n+2)]-1/(n+1),于是可以列出:
1/(1*2*3)=1/2(1+1/3)-1/2
1/(2*3*4)=1/2(1/2+1/4)-1/3
1/(3*4*5)=1/2(1/3+1/5)-1/4
1/(4*5*6)=1/2(1/4+1/6)-1/高告5
1/(5*6*7)=1/2(1/5+1/7)-1/6
......
1/(96*97*98)=1/2(1/96+1/98)-1/信念迅97
1/(97*98*99)=1/2(1/97+1/99)-1/98
1/(98*99*100)=1/2(1/98+1/100)-1/99
将滑此上面98个式子加起来,研究等式右侧前后项抵消的关系,可以得到,
=1/2*1/2+1/2*1/99+1/2*1/100-1/99
=9898/39600=4949/19800
=333300
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
50000
追问
过程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询