设函数f(x+1/x)=(x+x3)/(1+x4),求积分I=∫ f(x)dx 上限为2√2,下限为2

丘冷萱Ad
2012-12-22 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3845万
展开全部
ƒ(x+1/x)=(x+x³)/(1+x⁴) 分子分母同除以x²
=(1/x + x)/(1/x² + x²)
=(1/x + x)/(1/x² + x² + 2 - 2)
=(1/x + x)/[(1/x + x)² - 2]
因此:ƒ(x)=x/(x²-2)

∫[2→2√2] ƒ(x) dx
=∫[2→2√2] x/(x²-2) dx
=(1/2)∫[2→2√2] 1/(x²-2) d(x²)
=(1/2)ln|x²-2| |[2→2√2]
=(1/2)(ln6-ln2)
=(1/2)ln3

【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式