已知数列{an}满足a1=1,a2=2,a3=3,a4=4,a5=5,当n≥5时,a(n+1)=
已知数列{an}满足a1=1,a2=2,a3=3,a4=4,a5=5,当n≥5时,a(n+1)=a1a2……an-1,若数列{bn}(n∈N*),当n≥5时,a(n+1)...
已知数列{an}满足a1=1,a2=2,a3=3,a4=4,a5=5,当n≥5时,a(n+1)=a1a2……an-1,若数列{bn}(n∈N*),当n≥5时,a(n+1)=a1a2……an-1,若数列{bn}(n∈N*),满足bn=a1a2……an-a1^2-a2^2-……-an^2
求证:仅存在两个正整数m,使得bm=0 展开
求证:仅存在两个正整数m,使得bm=0 展开
1个回答
展开全部
证明
b1=a1-a1^2=0,
b2=-3,
b3=-8,
b4=-6,
b5=65
n≥5时,a(n+1)=a1a2……an-1 ,a6=a1a2a3a4a5-1,a6-a1a2a3a4a5=1
b6=(a1a2...a5a6-a1^2-a2^2-a3^2-...-a^5^2-a6^2
=(a1a2a3a4a5)^2-2a1a2a3a4a5+(a1a2a3a4a5-a1^2-a2^2-a3^2-a4^2-a5^2)-(a1a2a3a4a5-1)^2
=(a1a2a3a4a5-a1^2-a2^2-a3^2-a4^2-a5^2)-1
=b5-1
b7=b5-(7-5)
bn=b5-(n-5)
n≥5时,a(n+1)=a1a2……an-1,
n≥5,(a1a2a3...an+1)-an+1^2=(a1a2a3...an)(a1a2a3...an-1)-(a1a2a3..an-1)^2
=(a1a2a3...an)-1
b6=b5-1
b7=b6-1=b5-(7-5)
..
bn=b5-(n-5)
n=70时,b70=0
n=1,n=70时,bn=0, 1<n<5,bn<0, 5<n<70时,bn>0,n>70时,bn<0
所以仅存在两个整数m,m=1,m=70使得bm=0
b1=a1-a1^2=0,
b2=-3,
b3=-8,
b4=-6,
b5=65
n≥5时,a(n+1)=a1a2……an-1 ,a6=a1a2a3a4a5-1,a6-a1a2a3a4a5=1
b6=(a1a2...a5a6-a1^2-a2^2-a3^2-...-a^5^2-a6^2
=(a1a2a3a4a5)^2-2a1a2a3a4a5+(a1a2a3a4a5-a1^2-a2^2-a3^2-a4^2-a5^2)-(a1a2a3a4a5-1)^2
=(a1a2a3a4a5-a1^2-a2^2-a3^2-a4^2-a5^2)-1
=b5-1
b7=b5-(7-5)
bn=b5-(n-5)
n≥5时,a(n+1)=a1a2……an-1,
n≥5,(a1a2a3...an+1)-an+1^2=(a1a2a3...an)(a1a2a3...an-1)-(a1a2a3..an-1)^2
=(a1a2a3...an)-1
b6=b5-1
b7=b6-1=b5-(7-5)
..
bn=b5-(n-5)
n=70时,b70=0
n=1,n=70时,bn=0, 1<n<5,bn<0, 5<n<70时,bn>0,n>70时,bn<0
所以仅存在两个整数m,m=1,m=70使得bm=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询