如图,Rt△ABC内接于圆O,AC=BC,∠BAC的平分线AD交圆O于D,交
展开全部
连接OC OD
角CAD=角DAB
角ACB=角ADB=90度
三角形ACE相似三角形ABD
角AOC=90度
角DAB=22.5度
AO=OC 角DOB=45度 OD=OB 角CBD=22.5度
OC=OD OG垂直CD
角COG=角GOD=22.5度
三角形OCG相似三角形ADB相似三角形EBD BD/OG=ED/GD
又不难得出三角形OCD全等三角形ODB CD=DB=2GD
BD=4
角CAD=角DAB
角ACB=角ADB=90度
三角形ACE相似三角形ABD
角AOC=90度
角DAB=22.5度
AO=OC 角DOB=45度 OD=OB 角CBD=22.5度
OC=OD OG垂直CD
角COG=角GOD=22.5度
三角形OCG相似三角形ADB相似三角形EBD BD/OG=ED/GD
又不难得出三角形OCD全等三角形ODB CD=DB=2GD
BD=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如图,连接OD、OC,作DH⊥AB于H,
∵OC=OD,G是CD的中点,
∴角DOG=1/2角COD,角OGD=90度.
∵角CBD=1/2角COD,角EDB=90度,
∴角DOG=角CBD,角OGD=角EDB,
∴三角形OGD相似于三角形BDE,
∴OG:BD=GD:DE,
∴BD×GD= OG×DE=,
又∵CD=BD,DG=1/2CD,
∴DG=1/2 BD,
∴1/2BD平方=,
∴BD 平方 =,
又∵角BOD=2角BAD=45度,
∴三角形ODH是等腰直角三角形,
∴OH=DH,
设DH=CH=x,则OB=OD=,
BH=,
由勾股定理得DH平方+ BH 平方= BD 平方,
即
整理,得
取正解,得
∴圆O的半径OB=,,面积为6π.
∵OC=OD,G是CD的中点,
∴角DOG=1/2角COD,角OGD=90度.
∵角CBD=1/2角COD,角EDB=90度,
∴角DOG=角CBD,角OGD=角EDB,
∴三角形OGD相似于三角形BDE,
∴OG:BD=GD:DE,
∴BD×GD= OG×DE=,
又∵CD=BD,DG=1/2CD,
∴DG=1/2 BD,
∴1/2BD平方=,
∴BD 平方 =,
又∵角BOD=2角BAD=45度,
∴三角形ODH是等腰直角三角形,
∴OH=DH,
设DH=CH=x,则OB=OD=,
BH=,
由勾股定理得DH平方+ BH 平方= BD 平方,
即
整理,得
取正解,得
∴圆O的半径OB=,,面积为6π.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询