实际问题与二次函数 怎样设定自变量取值范围

聪明的猕猴桃Du
推荐于2016-12-01 · TA获得超过121个赞
知道答主
回答量:120
采纳率:100%
帮助的人:42万
展开全部
 一、函数关系式中自变量的取值范围

在一般的函数关系中自变量的取值范围主要考虑以下四种情况:⑴函数关系式为整式形式:自变量取值范围为任意实数;⑵函数关系式为分式形式:分母≠0;⑶函数关系式含算术平方根:被开方数≥0;⑷函数关系式含0指数:底数≠0.

例1.在下列函数关系式中,自变量x的取值范围分别是什么?

(1)为分式形式:分母2x+1≠0 ∴x≠-1/2 ∴x的取值范围为x≠-1/2;
(2)含算术平方根:被开方数3x-4≥0 ∴x≥4/3 ∴x的取值范围为x≥4/3;
  (3)含0指数,底数x-3≠0 ∴x≠3,x的取值范围为x≠3.
  
  二、实际问题中自变量的取值范围.
  
  在实际问题中确定自变量的取值范围,主要考虑两个因素:
  
  ⑴自变量自身表示的意义.如时间、用油量等不能为负数.  
  
  ⑵问题中的限制条件.此时多用不等式或不等式组来确定自变量的取值范围.

  
  二、几何图形中函数自变量的取值范围

几何问题中的函数关系式,除使函数式有意义外,还需考虑几何图形的构成条件及运动范围.特别要注意的是在三角形中“两边之和大于第三边”.

例3.若等腰三角形的周长为20cm,请写出底边长y与腰长x的函数关系式,并求自变量x的取值范围.

解析:底边长y与腰长x的函数关系式为:y=20-2x

①x表示等腰三角形腰长:x≥0

②三角形中“两边之和大于第三边”:2x>y 即2x>20-2x ∴x>5

③等腰三角形底边长y>0,20-2x>0,∴x<10

∴自变量x的取值范围是:5<x<10

参考资料: http://www.pep.com.cn/czsx/xszx/jtzd/czsxffjq/201109/t20110909_1068432.htm

dennis_zyp
2012-12-27 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
主要是根据实际变量的物理限制来设定取值范围。
比如长和宽,则必为正数,即x>0
比如三角形已知2边a,b,第三边x, 则必有|a-b|<x<a+b
比如圆的半径x, 则必有x>0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式