1计算:(1/a-x)-(1/a+x)-(2x/a^2+x^2)-(4x^3/a^4-x^4) 2,若x/2=y/3=z/5,且3x+2y-z=14,求x,y,z
展开全部
1/(a-x)-1/(a+x)-2x/(a^2+x^2)-4x^3/(a^4-x^4)
=[(a+x)-(a-x)]/[(a+x)(a-x)]-2x/(a^2+x^2)-4x^3/(a^4-x^4)
=2x/(a^2-x^2)-2x/(a^2+x^2)-4x^3/(a^4-x^4)
=[2x(a^2+x^2)-2x(a^2-x^2)]/[(a^2-x^2)(a^2+x^2)]-4x^3/(a^4-x^4)
=4x^3/(a^4+x^4)-4x^3/(a^4-x^4)
=[4x^3(a^4-x^4)-4x^3(a^4+x^4)]/[(a^4-x^4)(a^4+x^4)]
=8x^7/(a^8-x^8)
令x/2=y/3=z/5=k
x=2k,y=3k,z=5k
带入3x+2y-z=14
6k+6k-5k=14
7k=14
k=2
x=2k=4
y=3k=6
z=5k=10
=[(a+x)-(a-x)]/[(a+x)(a-x)]-2x/(a^2+x^2)-4x^3/(a^4-x^4)
=2x/(a^2-x^2)-2x/(a^2+x^2)-4x^3/(a^4-x^4)
=[2x(a^2+x^2)-2x(a^2-x^2)]/[(a^2-x^2)(a^2+x^2)]-4x^3/(a^4-x^4)
=4x^3/(a^4+x^4)-4x^3/(a^4-x^4)
=[4x^3(a^4-x^4)-4x^3(a^4+x^4)]/[(a^4-x^4)(a^4+x^4)]
=8x^7/(a^8-x^8)
令x/2=y/3=z/5=k
x=2k,y=3k,z=5k
带入3x+2y-z=14
6k+6k-5k=14
7k=14
k=2
x=2k=4
y=3k=6
z=5k=10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询