2个回答
展开全部
证明:过点A作AM⊥EC于M,AN⊥BD于N
∵∠EAC=∠EAB+∠BAC,∠BAD=∠DAC+∠BAC,∠EAC=∠DAC
∴∠EAC=∠BAD
∵AE=AB,AD=AC
∴△AEC≌△ABD (SAS)
∴EC=BD,S△AEC=S△ABD
∵AM⊥EC,AN⊥BD
∴S△AEC=EC×AM/2,S△ABD=BD×AN/2
∴EC×AM/2=BD×AN/2
∴AM=AN
∴AO平分∠EOD
数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
∵∠EAC=∠EAB+∠BAC,∠BAD=∠DAC+∠BAC,∠EAC=∠DAC
∴∠EAC=∠BAD
∵AE=AB,AD=AC
∴△AEC≌△ABD (SAS)
∴EC=BD,S△AEC=S△ABD
∵AM⊥EC,AN⊥BD
∴S△AEC=EC×AM/2,S△ABD=BD×AN/2
∴EC×AM/2=BD×AN/2
∴AM=AN
∴AO平分∠EOD
数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询