已知双曲线方程为x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点为F1,F2,P为双曲线右支上

已知双曲线方程为x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点为F1,F2,P为双曲线右支上的一点,|PF1|=37/3,|PF2|=13/3,角F1PF... 已知双曲线方程为x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点为F1,F2,P为双曲线右支上的一点,|PF1|=37/3,|PF2|=13/3,角F1PF2的平分线交x轴于Q(12/5,0),求双曲线方程 展开
F_Zest
推荐于2021-02-23 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1040
采纳率:100%
帮助的人:485万
展开全部
解:根据角平分线定理:|PF1|/|PF2|=|F1Q|/|QF2|
而|F1Q|=c+12/5,|QF2|=c-12/5
∴(37/3)/(13/3)=(c+12/5)/(c-12/5)
∴c=5
而|PF1|-|PF2|=2a=8
∴a=4
∴b=√(c²-a²)=3
∴双曲线的方程为:x²/4-y²/3=1

不懂可追问,有帮助请采纳,谢谢!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式