已知双曲线x2-my2=1(m>0)的右顶点为A,而B,C是双曲线右支上两点,若△ABC为等腰直角三角形,则m的取值范
2个回答
展开全部
A(1,0),B(xb,yb),C(xc,yc),xb<=xc
若△ABC为等腰直角三角形
1,AB=AC,xb=xc,yb=-yc,|yb|=xb-1
或(xb-1)^2+yb^2=(xc-1)^2+yc^2,yb/(xb-1)=-(xc-1)/yc,
(xb-1)^2+yb^2+(xc-1)^2+yc^2=(xc-xb)^2+(yc-yb)^2
2,AB=BC
(xb-1)^2+yb^2=(xc-xb)^2+(yc-yb)^2,yb/(xb-1)=-(xc-xb)/(yc-yb),
(xb-1)^2+yb^2+(xc-xb)^2+(yc-yb)^2=(xc-1)^2+yc^2
3,AC=BC
(xc-1)^2+yc^2=(xc-xb)^2+(yc-yb)^2,yc/(xc-1)=-(xc-xb)/(yc-yb),
(xc-1)^2+yc^2+(xc-xb)^2+(yc-yb)^2=(xb-1)^2+yb^2
若△ABC为等腰直角三角形
1,AB=AC,xb=xc,yb=-yc,|yb|=xb-1
或(xb-1)^2+yb^2=(xc-1)^2+yc^2,yb/(xb-1)=-(xc-1)/yc,
(xb-1)^2+yb^2+(xc-1)^2+yc^2=(xc-xb)^2+(yc-yb)^2
2,AB=BC
(xb-1)^2+yb^2=(xc-xb)^2+(yc-yb)^2,yb/(xb-1)=-(xc-xb)/(yc-yb),
(xb-1)^2+yb^2+(xc-xb)^2+(yc-yb)^2=(xc-1)^2+yc^2
3,AC=BC
(xc-1)^2+yc^2=(xc-xb)^2+(yc-yb)^2,yc/(xc-1)=-(xc-xb)/(yc-yb),
(xc-1)^2+yc^2+(xc-xb)^2+(yc-yb)^2=(xb-1)^2+yb^2
来自:求助得到的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询