同余方程组求解!
解同余方程组:x≡6(mod11)x≡3(mod8)x≡11(mod20)急,收到请速回复谢谢!...
解同余方程组:x≡6(mod11) x≡3(mod 8 ) x≡11(mod20)
急,收到请速回复谢谢! 展开
急,收到请速回复谢谢! 展开
3个回答
展开全部
解同余方程组:x≡6(mod11) x≡3(mod 8 ) x≡11(mod20)
解:
等效于同余式组
(
x==6 mod 11 (#1#)
x==3 mod 8 (#2#)
x==11 mod 4 (#3#)
x==11 mod 5 (#4#)
其中,用==表示同余号。
)
即求他们的解集的交集。
其中 (#2#)的解集是(#3#)的解集的真子集。故原同余式组等效于
(
x==6 mod 11 (#1#)
x==3 mod 8 (#2#)
x==1 mod 5 (#4#转化而来)
)
后文详解得答案为
x==171 mod 440.
过程如下:
x==
(6/ (8*5) mod 11) *8*5+
(3/ (11*5) mod 8) *11*5+
(1/ (11*8) mod 5) *11*8
(
注1:其中 x== b/a mod m 用来简化表示 ax == b mod m。我首次见到是在洪伯阳先生的著作中,我常称之为洪伯阳同余表示。在其分子与分母上可以使用同余性质、比例性质、带分数性质即作为假分数、带分数来处理等等。后来发现其他著作中也有,时间先后我没有考证。
下面为表达与计算上的方便,采用我个人引入的模积表示法。我察觉到其形式的对称性,并考虑到了计算的对称性及其同余本质,十分方便计算。以下使用模积表示式进行计算。
注2:上式简化表示为以下形式,称为模积表示。为方便理解写了很多。实际上,有很多过程用心算来完成,可以快速得解。
(
6/ (8*5) @ 11)
3/ (11*5) @ 8)
1/ (11*8) @ 5
)
)
==
6/ -4 @ 11
3/-1 @ 8
1/3 @5
==
-3/2==(-3+11)/2=4 @ 11
-3 @ 8
(1+5)/3=2 @ 5
==
4 @ 11
-3 @ 8
2 @ 5
==
4*8-3*11 @ 8*11
2 @5
==
-1 @ 88
2 @ 5
==
176-5 mod 88*5
==171 mod 440
理解了这种方法,对中国剩余定理的本质就更深入一步了。
更多资料,请百度搜索
wsktuuytyh 模积计数法
或
wsktuuytyh 洪伯阳同余表示
或
wsktuuytyh 不定方程
(注:其中来源我的现有姓名何冬州的五笔编码)
事实上,容易看出等效于
x==
6 mod 11
11 mod 8
11 mod 20
==
6 mod 11
11 mod 40
==
11+
(y==
-5 mod 11
0 mod 40
)
y==
-5/40 @ 11
0/11 @ 40
==
6/-4 @ 11
0 @ 40
==
4 @ 11
0 @ 40
==160
X==11+Y==171 MOD 440
解:
等效于同余式组
(
x==6 mod 11 (#1#)
x==3 mod 8 (#2#)
x==11 mod 4 (#3#)
x==11 mod 5 (#4#)
其中,用==表示同余号。
)
即求他们的解集的交集。
其中 (#2#)的解集是(#3#)的解集的真子集。故原同余式组等效于
(
x==6 mod 11 (#1#)
x==3 mod 8 (#2#)
x==1 mod 5 (#4#转化而来)
)
后文详解得答案为
x==171 mod 440.
过程如下:
x==
(6/ (8*5) mod 11) *8*5+
(3/ (11*5) mod 8) *11*5+
(1/ (11*8) mod 5) *11*8
(
注1:其中 x== b/a mod m 用来简化表示 ax == b mod m。我首次见到是在洪伯阳先生的著作中,我常称之为洪伯阳同余表示。在其分子与分母上可以使用同余性质、比例性质、带分数性质即作为假分数、带分数来处理等等。后来发现其他著作中也有,时间先后我没有考证。
下面为表达与计算上的方便,采用我个人引入的模积表示法。我察觉到其形式的对称性,并考虑到了计算的对称性及其同余本质,十分方便计算。以下使用模积表示式进行计算。
注2:上式简化表示为以下形式,称为模积表示。为方便理解写了很多。实际上,有很多过程用心算来完成,可以快速得解。
(
6/ (8*5) @ 11)
3/ (11*5) @ 8)
1/ (11*8) @ 5
)
)
==
6/ -4 @ 11
3/-1 @ 8
1/3 @5
==
-3/2==(-3+11)/2=4 @ 11
-3 @ 8
(1+5)/3=2 @ 5
==
4 @ 11
-3 @ 8
2 @ 5
==
4*8-3*11 @ 8*11
2 @5
==
-1 @ 88
2 @ 5
==
176-5 mod 88*5
==171 mod 440
理解了这种方法,对中国剩余定理的本质就更深入一步了。
更多资料,请百度搜索
wsktuuytyh 模积计数法
或
wsktuuytyh 洪伯阳同余表示
或
wsktuuytyh 不定方程
(注:其中来源我的现有姓名何冬州的五笔编码)
事实上,容易看出等效于
x==
6 mod 11
11 mod 8
11 mod 20
==
6 mod 11
11 mod 40
==
11+
(y==
-5 mod 11
0 mod 40
)
y==
-5/40 @ 11
0/11 @ 40
==
6/-4 @ 11
0 @ 40
==
4 @ 11
0 @ 40
==160
X==11+Y==171 MOD 440
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
解:本题应该这样求解,
计算 8和20的公倍数里面,120,mod11,余数为6。
然后计算 11与20的公倍数里面的要么是220*n, mod8 余数为 4,8,不能出现1,所以这个题根本没有解。
计算 8和20的公倍数里面,120,mod11,余数为6。
然后计算 11与20的公倍数里面的要么是220*n, mod8 余数为 4,8,不能出现1,所以这个题根本没有解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原方程组等价于x=6(mod11) ,x=3(mod 8),x=11(mod4) ,x=11(mod 5)
注意到x=3(mod 8)是x=11(mod4)的解的真子集,故等价于
x=6(mod11) ,x=3(mod 8),x=11(mod 5)
由于11,8,5两两互质,所以剩下的工作交给中国剩余定理
最后得到171是一个解,故通解为x=171(mod440)
一般结论:对于模不互质的情形,首先要检验,即任意两个有公约数的模对于最大公约数是否同余
如本题(8,20)=4,且3=11(mod4),符合
其次,列出等价同余方程组,其原则为所有的模数分解质因子为标准形,然后取每个质因子的最高次幂,并写出相应同余方程
本题,11是质数,8=2^3,20=2^2*5,因此模数分别取11,8,5对应同余方程为
x=6(mod11) ,x=3(mod 8),x=11(mod 5)
最后,由于每个同余方程的模取自不同质数的幂,故互质,所以用中国剩余定理得到一个特解,从而得到通解
注意到x=3(mod 8)是x=11(mod4)的解的真子集,故等价于
x=6(mod11) ,x=3(mod 8),x=11(mod 5)
由于11,8,5两两互质,所以剩下的工作交给中国剩余定理
最后得到171是一个解,故通解为x=171(mod440)
一般结论:对于模不互质的情形,首先要检验,即任意两个有公约数的模对于最大公约数是否同余
如本题(8,20)=4,且3=11(mod4),符合
其次,列出等价同余方程组,其原则为所有的模数分解质因子为标准形,然后取每个质因子的最高次幂,并写出相应同余方程
本题,11是质数,8=2^3,20=2^2*5,因此模数分别取11,8,5对应同余方程为
x=6(mod11) ,x=3(mod 8),x=11(mod 5)
最后,由于每个同余方程的模取自不同质数的幂,故互质,所以用中国剩余定理得到一个特解,从而得到通解
来自:求助得到的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询