已知函数f(x)=lnx+(a-x)/x,其中a为大于零的常数,若曲线y=f(x)在点(1,f(1)

处的切线与直线y=1-2x平行,求a值... 处的切线与直线y=1-2x平行,求a值 展开
吴锡浪
2013-01-02 · TA获得超过102个赞
知道答主
回答量:132
采纳率:0%
帮助的人:64.5万
展开全部
你这样想吧。这个题考的是切线吧。那就很有可能与导相关。我们可以求导来解。
利用两线平行=>斜率相等来解。
f ' ( 1) = (x +a) / x ^2 | x=1
= 1 +a
= -2 ( 直线y=1-2x斜率)
所以 a 就应该等于 -3
dennis_zyp
2013-01-02 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2.4亿
展开全部
依题意f'(1)=-2
由f'(x)=1/x-a/x^2
得:f'(1)=1-a=-2
得:a=3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友7ac5e4e
2013-01-02 · TA获得超过155个赞
知道答主
回答量:107
采纳率:0%
帮助的人:54.7万
展开全部
(1)f′(x)=
ax-1
ax2
,x>0,由函数f(x)在[1,+∞)上单调递增,知a≥
1
x
在[1,+∞)上恒成立.由当x∈[1,+∞)时,
1
x
≤1,能求出a的取值范围.(2)令f′(x)=0,得x=
1
a
,当a≥
1
2
时,f′(x)>0在[2,+∞)上恒成立,f(x)在[2,+∞)上为增函数,f(x)min=f(2)=ln2-
1
2a
;0<a<
1
2
时,∵对于x∈[2,
1
a
),有f′(x)<0;对于x∈(
1
a
,+∞)有f′(x)>0.故f(x)min=f(
1
a
)=ln
1
a
+1-
1
a
.由此能求出f(x)在[2,+∞)上的最小值.
解答:解:(1)∵函数f(x)=lnx+1-xax,
∴f′(x)=ax-1ax2,x>0.…(2分)
∵函数f(x)在[1,+∞)上单调递增,
∴f′(x)≥0在[1,+∞)上恒成立,
即a≥1x在[1,+∞)上恒成立.
又∵当x∈[1,+∞)时,1x≤1,
∴a≥1,即a的取值范围为[1,+∞).…(4分)
(2)令f′(x)=0,得x=1a,…(5分)
当1a≤2时,即a≥12时,
∵f′(x)>0在[2,+∞)上恒成立,
这时f(x)在[2,+∞)上为增函数,
∴f(x)min=f(2)=ln2-12a.…(7分)
当0<a<12时,∵对于x∈[2,1a),有f′(x)<0;对于x∈(1a,+∞)有f′(x)>0.…(9分)
∴f(x)min=f(1a)=ln1a+1-1a.…(11分)
综上,f(x)在[2,+∞)上的最小值为:
①当a≥12时,f(x)min=f(2)=ln2-12a.
②当0<a<12时,f(x)min=f(1a)=ln1a+1-1a.…(12分)
点评:本题考查求a的取值范围和求函数f(x)在区间[2,+∞)上的最小值.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意导数性质的灵活运用.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式