已知离心率为2√5/5的椭圆x²/a²+y²/b²=1(a>b>0)... 5

已知离心率为2√5/5的椭圆x²/a²+y²/b²=1(a>b>0)上的点P到左焦点F的最短距离为(√5)-22)如果,过椭圆的左... 已知离心率为2√5/5的椭圆x²/a²+y²/b²=1(a>b>0)上的点P到左焦点F的最短距离为(√5 )-2

2)如果,过椭圆的左焦点F任作一条与两坐标都不垂直的弦AB,若点M在X轴上,且使得MF为△AMB的一条内角平分线,则称点M为该椭圆的“左特征点”,求椭圆的“左特征点”M坐标
展开
暖眸敏1V
2013-01-03 · TA获得超过9.6万个赞
知道大有可为答主
回答量:1.8万
采纳率:90%
帮助的人:9759万
展开全部
(1)
根据题意:c/a=2√5/5,a-c=√5-2
解得: c=2,a=√5
∴b²=a²-c²=1
∴椭圆方程为x²/5+y²=1

(2)
椭圆左焦点F(-2,0),
设AB的斜率为k,AB:y=k(x+2)
y=k(x+2)与x²/5+y²=1联立,消去y
得: x²+5k²(x+2)²-5=0
即(5k²+1)x²+20k²x+20k²-5=0
Δ>0恒成立
设A(x1,y1),B(x2,y2)
则x1+x2=-20k²/(5k²+1),x1x2=(20k²-5)/(5k²+1)
设M(m,0)
∵MF为△AMB的一条内角平分线
∴AM与BM的斜率互为相反数
∴y1/(x1-m)+y2/(x2-m)=0
[y1(x2-m)+y2(x1-m)]/[(x1-m)(x2-m)]=0
∴y1(x2-m)+y2(x1-m)=0
(x1+2)(x2-m)+(x2+2)(x1-m)=0
2x1x2+(2-m)(x1+x2)-4m=0
∴2(20k²-5)/(5k²+1)-(2-m)*20k²/(5k²+1)-4m=0
∴40k²-10+20(m-2)k²-4m(5k²+1)=0
∴-10-4m=0
∴m=-5/2
∴椭圆的“左特征点”M(-5/2,0)
深夜吴眠
2013-02-01 · TA获得超过102个赞
知道答主
回答量:201
采纳率:0%
帮助的人:64.2万
展开全部
求椭圆的“左特征点”M坐标M(-5/2,0)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式