已知:如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,PA是⊙O的切线,A为切

刘孔范
2013-01-03 · TA获得超过1.7万个赞
知道大有可为答主
回答量:2692
采纳率:100%
帮助的人:844万
展开全部
已知:如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,PA是⊙O的切线,A为切点,割线PBD过圆心,交⊙O于另一点D,连接CD.
(1)求证:PA∥BC;
(2)求⊙O的半径及CD的长.分析:(1)如图;由AB=AC,可以得到∠1=∠2,然后利用弦切角定理就可以证得PA与BC的内错角相等,由此得证;
(2)本题需构建直角三角形求解,连接OA,交BC于G,由垂径定理知:OA垂直平分BC,
在Rt△ABG中,已知了AB、BG的长,根据勾股定理可求出AG的长,
在Rt△OBG中,用圆的半径表示出OG的长,然后根据勾股定理,求出圆的半径长,进而可求出OG的长,
△BCD中,易证得OG是△BCD的中位线,由此可求出CD的长.解答:(1)证明:∵PA是⊙O的切线,
∴∠PAB=∠2.
又∵AB=AC,
∴∠1=∠2,
∴∠PAB=∠1.
∴PA∥BC.

(2)解:连接OA交BC于点G,则OA⊥PA;
由(1)可知,PA∥BC,
∴OA⊥BC.
∴G为BC的中点,
∵BC=24,
∴BG=12.
又∵AB=13,
∴AG=5.
设⊙O的半径为R,则OG=OA-AG=R-5,
在Rt△BOG中,
∵OB2=BG2+OG2,
∴R2=122+(R-5)2,
∴R=16.9,OG=11.9;

参考资料: http://www.jyeoo.com/math/ques/detail/9573a2a7-22ad-4113-85b3-0fb7d881ebb6?a=1

cg4301
2013-01-03
知道答主
回答量:5
采纳率:0%
帮助的人:3.2万
展开全部
(1)如图;由AB=AC,可以得到∠1=∠2,然后利用弦切角定理就可以证得PA与BC的内错角相等
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式