2024-10-13 广告
令z=x+iy
|(x+3)+iy|=4-|(x+1)+iy|
√[(x+3)^2+y^2]=4-√[(x+1)^2+y^2]
平方:(x+3)^2+y^2=16-8√[(x+1)^2+y^2]+(x+1)^2+y^2
消去:4x-8=-8√[(x+1)^2+y^2]
即 x-2=-2√[(x+1)^2+y^2]
再平方:x^2-4x+4=4(x+1)^2+4y^2
3x^2+12x+4y^2=0
3(x+2)^2+4y^2=12
(x+2)^2/4+y^2/3=1。
发展简况
复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做"达朗贝尔-欧拉方程"。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做"柯西-黎曼条件"。
复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。
|(x+3)+iy|=4-|(x+1)+iy|
√[(x+3)^2+y^2]=4-√[(x+1)^2+y^2]
平方:(x+3)^2+y^2=16-8√[(x+1)^2+y^2]+(x+1)^2+y^2
消去:4x-8=-8√[(x+1)^2+y^2]
即 x-2=-2√[(x+1)^2+y^2]
再平方:x^2-4x+4=4(x+1)^2+4y^2
3x^2+12x+4y^2=0
3(x+2)^2+4y^2=12
(x+2)^2/4+y^2/3=1
第二行到第三行不理解,不是在两边分别平方而是在里面平方,印象中没有这样的公式啊,麻烦您在说明一下
绝对值就是与原点的距离。用距离公式即可。
z=x+iy
|z|=√(x^2+y^2)