已知圆O:x²+y²=2,圆M:(x-1)²+(y-3)²=1,过圆M上任一点p作圆O的切线PA,设PA与圆M的另

已知圆O:x²+y²=2,圆M:(x-1)²+(y-3)²=1,过圆M上任一点p作圆O的切线PA,设PA与圆M的另一个交点为Q(1... 已知圆O:x²+y²=2,圆M:(x-1)²+(y-3)²=1,过圆M上任一点p作圆O的切线PA,设PA与圆M的另一个交点为Q (1)当PQ最大时,求PA的长度 (2)过M作圆O的切线MR,MT,R,T为切点,求直线RT的方程 展开
EagleSami
2013-01-05 · TA获得超过2979个赞
知道小有建树答主
回答量:355
采纳率:0%
帮助的人:644万
展开全部

^2是平方

1) 由圆的方程可知,⊙O半径√2,圆心O(0,0);⊙M半径1,圆心M(1,3)

    P、Q都在⊙M上,所以PQ是⊙M的弦

    而直径是最长的弦,所以PQ最大时,PQ是直径,即PQ过M

    这样切线PA也过M

    联结MO,AO,则有MA⊥OA

    AO是⊙O的半径,所以AO=√2,而由于M(1,3),O(0,0),MO=√(1^2+3^2)=√10

    所以在Rt△AOM中,∠MAO=90°,所以MA=√(MO^2-AO^2)=√((√10)^2-(√2)^2)=2√2

    而且MP是⊙M的半径,所以MP=1

    则当P在M、A之间时,PA=AM-MP=2√2-1;当Q在A、M之间时,PA=AM+MP=2√2+1

    所以PA=2√2-1或2√2+1

 

 

2) 第二题还是过M作⊙O的切线,所以可以沿用第一小题中的一些结论

    在第一小题中,A是过M的⊙O的切线所得的切点,也就是第二小题中的R、T

    而且从第一小题中的AM=2√2,可知有MR=MT=2√2

    若设R(x,y),则R在⊙O上,有x^2+y^2=2

    而且MR=2√2,由M(1,3)得√((x-1)^2+(y-3)^2)=2√2

    联立两个方程,解得(x,y)=(-1,1)(7/5,1/5)

    这两个坐标中一个坐标是R的,另一个是T的

    虽然不知道具体哪个是哪个,但题目是求直线RT方程,没有多大关系

    RT的斜率k=1/5-1/(7/5-(-1))=-1/3

    则方程为(y-1)=-1/3*(x-(-1)),即直线RT的方程为x+3y-2=0

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式