微分方程y''-2y'+2y=e^x(xcosx+2sinx)具有什么形式的特解?~~~~~求高人指

 我来答
帐号已注销
2021-07-25 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:159万
展开全部

特征方程r^2-2r+2=0,r=1+i和1-i。

由于右端e^x(cosx)中,1+i刚好是根,故特解形式为:xe^x((Ax+B)(Csinx+Dcosx)

e^x的特解是Ce^x,代入微分方程得C=1

xcos的特解是x(Asinx+Bcosx)+Csinx+Dcosx,代入微分方程得

A+2B=0,B-2A=1,C-2D-2A-2B=0,D+2C-2B+2A=0

A=-2/5,B=1/5,C=-14/25,D=-2/25

约束条件

微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

教育小百科达人
2020-07-11 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:459万
展开全部

特征方程r^2-2r+2=0,r=1+i和1-i。

由于右端e^x(cosx)中,1+i刚好是根,故特解形式为:xe^x((Ax+B)(Csinx+Dcosx)

偏微分方程的阶数定义类似常微分方程,但更细分为椭圆型、双曲线型及抛物线型的偏微分方程,尤其在二阶偏微分方程中上述的分类更是重要。有些偏微分方程在整个自变量的值域中无法归类在上述任何一种型式中。

扩展资料:

微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。

常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
nsjiang1
2013-01-06 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3696万
展开全部
特征方程r^2-2r+2=0,r=1+i和1-i.由于右端e^x(cosx)中,1+i刚好是根,故特解形式为:xe^x((Ax+B)(Csinx+Dcosx)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式