如图,在Rt△ABC中,∠BAC=90°,AB=AC,点M,N在边BC上. (1)如图1,如果AM=AN,求证:BM=CN; (2)如图2,如果M,N是
(1)如图1,如果AM=AN,求证:BM=CN;
(2)如图2,如果M、N是边BC上任意两点,并满足∠MAN=45°,那么线段BM、MN、NC是否有可能使等式MN2=BM2+NC2成立?如果成立,请证明;如果不成立,请说明理由. 展开
(1)证明:∵AB=AC,∴∠B=∠C.
∵AM=AN,∴∠AMN=∠ANM.
即得∠AMB=∠ANC.
在△ABM和△CAN中,
∠AMB=∠ANC,∠B=∠CAB=AC
∴△ABM≌△CAN(AAS).
∴BM=CN.
另证:过点A作AD⊥BC,垂足为点D.
∵AB=AC,AD⊥BC,∴BD=CD.
同理,证得MD=ND.
∴BD-MD=CD-ND.
即得BM=CN.
(2)MN2=BM2+NC2成立.
证明:过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.
∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.
∵CE⊥BC,∴∠ACE=∠B=45°.
在△ABM和△ACE中,
AB=AC∠B=∠ACEBM=CE
∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.
在△MAN和△EAN中,
AM=AE∠MAN=∠EANAN=AN
∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,由勾股定理,得EN^2=EC^2+NC^2.
即得MN^2=BM^2+NC^2.
另证:由∠BAC=90°,AB=AC,可知,把△ABM绕点A逆时针旋转90°后,AB与AC重合,设点M的对应点是点E.
于是,由图形旋转的性质,得AM=AE,∠BAM=∠EAN.
以下证明同上.
∵AB=AC,AM=AN,
∴BD=CD,MD=ND,
∴BD-MD=CD-ND,
即BM=CN。
⑵将ΔABM绕A逆时针旋转90°到ΔACP,
则∠BAM=∠CAP,CP=BM,AM=AP,连接PN,
∵∠B=∠C=45°,∴∠PCN=90°,
∵∠MAN=45°,∴∠BAM+∠CAN=45°,
∴∠PAN=45°,
在ΔANM与ΔANP中,
∠NAM=∠NAP=45°,
AN=AN,AM=AP,
∴ΔANM≌ΔANP,
∴MN=PN,
在RTΔCPN中,PN^2=NC^2+PC^2,
∴MN^2=BM^2+NC^2。
(2)利用旋转的方法,将三角形anc转到边ab并与之重合,明显角mbn‘为直角,角n’am为45度。连接mn‘,由角边角可证三角形amn与amn'全等,所以mn=mn',由勾股定理得解。