如图,梯形ABCD中,AD‖BC,∠ABC=2∠BCD=2α,点E在AD上,点F在DC上,且∠BEF=∠A.
(用含α的代数式表示);(2)当AB=AD时,猜想线段EB、EF的数量关系,并证明你的猜想;(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图),求 EBEF的值(用含m,n的代数式表示) 展开
(1)解:∵梯形ABCD中,AD∥BC,
∴∠A+∠ABC=180°,
∴∠A=180°-∠ABC=180°-2α,
又∵∠BEF=∠A,
∴∠BEF=∠A=180°-2α;
故答案为:180°-2α;
(2)EB=EF.
证明:连接BD交EF于点O,连接BF.
∵AD∥BC,
∴∠A=180°-∠ABC=180°-2α,∠ADC=180°-∠C=180°-α.
∵AB=AD,
∴∠ADB=12
(180°-∠A)=α,
∴∠BDC=∠ADC-∠ADB=180°-2α,
由(1)得:∠BEF=180°-2α=∠BDC,
又∵∠EOB=∠DOF,
∴△EOB∽△DOF,
∴OEOD=
OBOF,
即OEOB=
ODOF,
∵∠EOD=∠BOF,
∴△EOD∽△BOF,
∴∠EFB=∠EDO=α,
∴∠EBF=180°-∠BEF-∠EFB=α=∠EFB,
∴EB=EF;
(3)解:延长AB至G,使AG=AE,连接BE,GE,
则∠G=∠AEG=180°-∠A2=180°-(180°-2α)2=α,
∵AD∥BC,
∴∠EDF=∠C=α,∠GBC=∠A,∠DEB=∠EBC,
∴∠EDF=∠G,
∵∠BEF=∠A,
∴∠BEF=∠GBC,
∴∠GBC+∠EBC=∠DEB+∠BEF,
即∠EBG=∠FED,
∴△DEF∽△GBE,
∴EBEF=
BGDE,
∵AB=mDE,AD=nDE,
∴AG=AE=(n+1)DE,
∴BG=AG-AB=(n+1)DE-mDE=(n+1-m)DE,
∴EBEF=
BGDE=(n+1-m)DEDE=n+1-m.
∴∠A+∠ABC=180°,
∴∠A=180°-∠ABC=180°-2α,
又∵∠BEF=∠A,
∴∠BEF=∠A=180°-2α;
故答案为:180°-2α;
(2)EB=EF.
证明:连接BD交EF于点O,连接BF.
∵AD∥BC,
∴∠A=180°-∠ABC=180°-2α,∠ADC=180°-∠C=180°-α.
∵AB=AD,
∴∠ADB=1 2 (180°-∠A)=α,
∴∠BDC=∠ADC-∠ADB=180°-2α,
由(1)得:∠BEF=180°-2α=∠BDC,
又∵∠EOB=∠DOF,
∴△EOB∽△DOF,
∴OE OD =OB OF ,
即OE OB =OD OF ,
∵∠EOD=∠BOF,
∴△EOD∽△BOF,
∴∠EFB=∠EDO=α,
∴∠EBF=180°-∠BEF-∠EFB=α=∠EFB,
∴EB=EF;
(3)解:延长AB至G,使AG=AE,连接BE,GE,
则∠G=∠AEG=180°-∠A 2 =180°-(180°-2α) 2 =α,
∵AD∥BC,
∴∠EDF=∠C=α,∠GBC=∠A,∠DEB=∠EBC,
∴∠EDF=∠G,
∵∠BEF=∠A,
∴∠BEF=∠GBC,
∴∠GBC+∠EBC=∠DEB+∠BEF,
即∠EBG=∠FED,
∴△DEF∽△GBE,
∴EB EF =BG DE ,
∵AB=mDE,AD=nDE,
∴AG=AE=(n+1)DE,
∴BG=AG-AB=(n+1)DE-mDE=(n+1-m)DE,
∴EB/EF =BG/DE =(n+1-m)DE/DE =n+1-m.
(用含α的代数式表示);
(2)当AB=AD时,猜想线段EB、EF的数量关系,并证明你的猜想;
(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图),求
EBEF的值(用含m,n的代数式表示)