急啊:已知函数f(x)=sin^4x+2√3sinxcosx-cos^4x
(2)函数f(x)的性质
(3)说明已知函数图象可由y=sinx的图像经过怎样变换得到
(4)函数y=f(x)-m在[0,π/2]上的图像始终在直线y=2的下方,求实数m的取值范围.
(5)对于任意x∈[0,π/2],都有|f(x)-m|<=2,求实数m的取值范围
(6)方程f(x)=m在[0,π/2]上有两解,求实数m的取值范围
在线求解答 谢谢各位大虾!!! 实在是急 (过程好的可另外加分!) 展开
f(x) = sin⁴x+2√3sinxcosx-cos⁴x
= (sin²x + cos²x)(sin²x - cos²x) + 2√3sinxcosx
= sinx² - cos²x + 2√3sinxcosx
= -cos(2x) + √3sin(2x)
= 2[(√3/2)sin(2x) - (1/2)cos(2x)]
= 2[sin(2x)cos(π/6) - cos(2x)sin(π/6)]
= 2sin(2x - π/6)
(1)振幅2, 周期: 2π/2 = π
(2)正弦函数
(3)先将y = sinx的横坐标压缩一半(即2 -> 1, 6-> 3等),纵坐标不变,得到的图象是y = sin(2x)
然后将其向右平移π/12, 得到 y = sin(2x - π/6)的图象
最后将每点的纵坐标加倍,得到y = 2sin(2x - π/6)的图象
(4)2x - π/6 = π/2, x = π/3, 此时 f(x)在[0,π/2]上的最大值为2 , 所以m >0
(5)f(x)在[0,π/2]上的最大值为2, 最小值为f(0) = 2sin(-π/6) = -1
|f(x)-m| ≤ 2
-2 ≤ f(x) - m ≤ 2
m - 2 ≤ f(x) ≤ m + 2
f(0) = -1用于m - 2 ≤ f(x): m - 2 ≤ -1, m ≤ 1
f(π/3) = 2用于 f(x) ≤ m+ 2: 2 ≤ m + 2, m ≥ 0
0 ≤ m ≤ 1
(6) 见图,1 ≤ m < 2