设n阶矩阵A的伴随矩阵为A*,证明:(提示:AA*=│A│In)
1个回答
展开全部
在百度上看到别人正好问了这个问题,答案就复制过来了,网址是http://zhidao.baidu.com/question/145016219(1)
证:
如果r(A)<n-1,A的所有n-1阶子式行列式都为0
由伴随阵的定义,A*=0
∴|A*|=0
如果r(A)=n-1
A(A*)=|A|E=0
A*的列向量为Ax=0的解,根据线性方程组理论
r(A)+r(A*)≤n
∴r(A*)≤1
∴|A*|=0
结论得证!
(2)
如果|A|=0,利用(1)的结论,|A*|=0
∴|A*|=|A|^(n-1)
如果|A|≠0,
∵A(A*)=|A|E
∴|A(A*)|=||A|E|【注意|A|是常数,计算行列式提出来就是|A|^n】
即:|A||A*|=|A|^n
∴|A*|=|A|^(n-1)
证:
如果r(A)<n-1,A的所有n-1阶子式行列式都为0
由伴随阵的定义,A*=0
∴|A*|=0
如果r(A)=n-1
A(A*)=|A|E=0
A*的列向量为Ax=0的解,根据线性方程组理论
r(A)+r(A*)≤n
∴r(A*)≤1
∴|A*|=0
结论得证!
(2)
如果|A|=0,利用(1)的结论,|A*|=0
∴|A*|=|A|^(n-1)
如果|A|≠0,
∵A(A*)=|A|E
∴|A(A*)|=||A|E|【注意|A|是常数,计算行列式提出来就是|A|^n】
即:|A||A*|=|A|^n
∴|A*|=|A|^(n-1)
参考资料: http://zhidao.baidu.com/question/145016219
来自:求助得到的回答
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询