已知P是椭圆x^2∕4+y^2∕3=1上的一点,F1、F2是该椭圆的两个焦点,若三角形⊿PF1F2的内切圆半径为1∕2,则

向量PF1·向量PF2的值为?... 向量PF1·向量PF2的值为? 展开
feidao2010
推荐于2021-02-13 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
解答:
不妨设P在第一象限。
椭圆x^2∕4+y^2∕3=1
∴ a²=4,b²=3
∴ c²=a²-b²=1
设⊿PF1F2的内切圆的圆心是M,
则S⊿PF1F2
=S⊿PF1M+S⊿PF2M+S⊿F1F2M
=(1/2) *|PF1|*(1/2)+(1/2)*|PF2|*(1/2)+(1/2)*|F1F2|*(1/2)
=(1/4)*(|PF1|+|PF2|+|F1F2|)
=(1/4)(2a+2c)
=(1/4)*6
=3/2
又 ⊿PF1F2的面积S=(1/2)|F1F2|*|yP|=c*|yP|
∴ 1*|yP|=3/2
∴ yP=3/2
代入椭圆方程 x^2∕4+y^2∕3=1
解得 xP=1
∴ P(1,3/2)
F1(-1,0),F2(1,0)
向量PF1=(-2,-3/2)
向量PF2=(0,-3/2)
∴ 向量PF1·向量PF2=-2*0+(-3/2)*(-3/2)=9/4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式