先化简,再求值:(1/(x+1)+(x^2-2x+1)/(x^2-1)/(x-1)/(x+1),其中x=3
3个回答
展开全部
1/(x+1)+(x^2-2x+1)/(x^2-1)/(x-1)/(x+1)
=1/(x+1)+(x-1)²/(x+1)(x-1)×(x+1)/(x-1)
=1/(x+1)+1
=(x+2)/(x+1)
当x=3时
原式=5/4
[1/(x+1)+(x^2-2x+1)/(x^2-1)]/(x-1)/(x+1)
=[1/(x+1)+(x-1)²/(x+1)(x-1)]×(x+1)/(x-1)
=1/(x-1)+1
当x=3时
原式=1/2+1=3/2
=1/(x+1)+(x-1)²/(x+1)(x-1)×(x+1)/(x-1)
=1/(x+1)+1
=(x+2)/(x+1)
当x=3时
原式=5/4
[1/(x+1)+(x^2-2x+1)/(x^2-1)]/(x-1)/(x+1)
=[1/(x+1)+(x-1)²/(x+1)(x-1)]×(x+1)/(x-1)
=1/(x-1)+1
当x=3时
原式=1/2+1=3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你给的题就不明白,用手机把原题拍下来,补充到后面.这题这么简单,唉........检验正确答案你就直接代入,就知道了.式子本身就极为简单.
追问
【1/(x+1)+(x^2-2x+1)/(x^2-1)】/(x-1)/(x+1)
追答
你这样发还是不明白,是1/[(x+1)+(x^2-2X+1)]/(x^2-1)/(x-1)/(x+1)
还是1/(x+1)+[(x^2-2x+1)/(x^2-1)]/(x-1)/(x+1)还是其它情况?要知道,只要有一处看错,答案就会不一样了.所以要求你把原题拍照后上传.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
[1/(x+1)+(x^2-2x+1)(x^2-1)]/[(x-1)/(x+1)]
=[1/(x+1)+(x-1)^2/(x-1)(x+1)]/[(x-1)/(x+1)]
=[1/(x+1)+(x-1)/(x+1)]*(x+1)/(x-1)
=1/(x+1)*(x+1)/(x-1)+(x-1)/(x+1)*(x+1)/(x-1)
=1/(x-1)+1
=(1+x-1)/(x-1)
=x/(x-1)
=3/(3-1)
=3/2
=[1/(x+1)+(x-1)^2/(x-1)(x+1)]/[(x-1)/(x+1)]
=[1/(x+1)+(x-1)/(x+1)]*(x+1)/(x-1)
=1/(x+1)*(x+1)/(x-1)+(x-1)/(x+1)*(x+1)/(x-1)
=1/(x-1)+1
=(1+x-1)/(x-1)
=x/(x-1)
=3/(3-1)
=3/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询