2个回答
展开全部
1/(ζ^2+1)=arctanb/b
ζ^2=b/arctanb-1
ζ^2/b^2=(b-arctanb)/(b^2*arctanb)
lim(b→0)ζ^2/b^2=lim(b→0)(b-arctanb)/(b^2*arctanb)
令b=tant
则原式=lim(t→0)(tant-t)/(t*tan^2(t))=lim(t→0)(1/cos^2(t)-1)/(tan^2(t)+2t*tant/cos^2(t))=lim(t→0)sin^2(t)/(sin^2(t)+2t*tant)=lim(t→0)2sintcost/(2sintcost+2tant+2t/cos^2(t))=lim(t→0)sintcos^3(t)/(sintcos^3(t)+sintcost+t)=lim(t→0)(cos^4(t)-3sin^2(t)cos^2(t))/(cos^4(t)-3sin^2(t)cos^2(t)+cos^2(t)-sin^2(t)+1)=(1-0)/(1-0+1-0+1)=1/3
ζ^2=b/arctanb-1
ζ^2/b^2=(b-arctanb)/(b^2*arctanb)
lim(b→0)ζ^2/b^2=lim(b→0)(b-arctanb)/(b^2*arctanb)
令b=tant
则原式=lim(t→0)(tant-t)/(t*tan^2(t))=lim(t→0)(1/cos^2(t)-1)/(tan^2(t)+2t*tant/cos^2(t))=lim(t→0)sin^2(t)/(sin^2(t)+2t*tant)=lim(t→0)2sintcost/(2sintcost+2tant+2t/cos^2(t))=lim(t→0)sintcos^3(t)/(sintcos^3(t)+sintcost+t)=lim(t→0)(cos^4(t)-3sin^2(t)cos^2(t))/(cos^4(t)-3sin^2(t)cos^2(t)+cos^2(t)-sin^2(t)+1)=(1-0)/(1-0+1-0+1)=1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询