不定积分的一道题目
f '(x)=1/x.
f '(e^x)=e^ (-x).
积分 = Integrate[ e^ (-2x) - e^ (2x) / (2 - e^ (4x))]dx
y=e^ (2x), dy/dx = 2e^ (2x),
dx = dy/ (2y).
积分 = 1/2 Integrate[ 1/ y^2-1/ (2-y^2)]dy
= 1/2 (-1/y+ Integrate[ 1/ (y+sqrt(2)) (y-sqrt(2))]dy)
= -1/ (2y) + 1/ (4sqrt(2)) Integrate[ 1/ (y-sqrt(2)) - 1/ (y+sqrt(2))]dy
= -1/ (2y) + 1/ (4sqrt(2)) ( ln( y-sqrt(2)) - ln( y+sqrt(2)))
= -1/ (2e^2x) + 1/ (4sqrt(2)) ( ln( e^2x-sqrt(2)) - ln( e^2x+sqrt(2)))