计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧

heanmeng
2013-01-12 · TA获得超过6749个赞
知道大有可为答主
回答量:3651
采纳率:94%
帮助的人:1504万
展开全部
解:在半球面∑上添加圆面S:(x²+y²=1,z=0),使之构成封闭曲面V=∑+S。
∵∫∫<S>x³dydz+y³dzdx+z³dxdy=0 (∵z=0,∴dz=0)
∴ ∫∫<∑>x³dydz+y³dzdx+z³dxdy+∫∫<S>x³dydz+y³dzdx+z³dxdy
=∫∫∫<V>(3x²+3y²+3z²)dxdydz (应用高斯公式)
=3∫∫∫<V>(x²+y²+z²)dxdydz
=3∫<0,2π>dθ∫<0,π/2>dφ∫<0,1>r²*r²sinφdr (作球面坐标变换)
=3*(2π)*(cos(0)-cos(π/2))*(1^5/5-0^5/5)
=6π/5
故∫∫<∑>x³dydz+y³dzdx+z³dxdy=∫∫∫<V>(3x²+3y²+3z²)dxdydz-∫∫<S>x³dydz+y³dzdx+z³dxdy
=6π/5-0
=6π/5。
混合型孩子
2013-01-11
知道答主
回答量:9
采纳率:0%
帮助的人:5.3万
展开全部
∑是上半球面z=根下1-x^2-y^2的上侧, 可以将球面补成封闭曲面,即加上底面x^2+y^2=1,然后就可以用高斯公式了,利用高斯公式将上式转换为三重积分就容易做了。注意,既然多加了一个面,则式子中还要减去上式在所加面上的积分
追问
能不能写下详细解答啊,求你了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式