数学问题,分子是1分母有三项相乘的分式如何裂项!!!求解!!!
展开全部
不知道你要问的是否是1/[n(n+1)(n+2)]如何裂项?比如让求
Sn=1/(1*2*3)+1/(2*3*4)+……+1/[n(n+1)(n+2)]
因1/[n(n+1)(n+2)]=1/2*2/[n(n+1)(n+2)]
=1/2*[(n+2)-n]/[n(n+1)(n+2)]
=1/2*{1/[n(n+1)]-1/[(n+1)(n+2)]}
故
Sn=1/(1*2*3)+1/(2*3*4)+……+1/[n(n+1)(n+2)]
=1/2*[1/(1*2)-1/(2*3)]+1/2*[1/(2*3)-1/(3*4)]+……+1/2*{1/[n(n+1)]-1/[(n+1)(n+2)]}
=1/2*{1/(1*2)-1/[(n+1)(n+2)]}
=1/2*[(n+1)(n+2)-2]/[2(n+1)(n+2)]
=n(n+3)/[4(n+1)(n+2)]
不明白请追问。
Sn=1/(1*2*3)+1/(2*3*4)+……+1/[n(n+1)(n+2)]
因1/[n(n+1)(n+2)]=1/2*2/[n(n+1)(n+2)]
=1/2*[(n+2)-n]/[n(n+1)(n+2)]
=1/2*{1/[n(n+1)]-1/[(n+1)(n+2)]}
故
Sn=1/(1*2*3)+1/(2*3*4)+……+1/[n(n+1)(n+2)]
=1/2*[1/(1*2)-1/(2*3)]+1/2*[1/(2*3)-1/(3*4)]+……+1/2*{1/[n(n+1)]-1/[(n+1)(n+2)]}
=1/2*{1/(1*2)-1/[(n+1)(n+2)]}
=1/2*[(n+1)(n+2)-2]/[2(n+1)(n+2)]
=n(n+3)/[4(n+1)(n+2)]
不明白请追问。
更多追问追答
追问
有个题目是:1/[(2+x)(1+x)(1-x)],答应是拆分后分母多了系数,不知道怎么得出来的!!
追答
你这道题目无法用裂项法,因为:1/[(2+x)(1+x)(1-x)]=-1/[(2+x)(1+x)(x-1)],分母三个因子不是等差数列,所以裂项后无法错位相消。所以这道题目裂项法不能凑效。似乎用其它办法也得不出和式
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询