已知函数f(x)=(x^2-4)(x-a)的一个极值点为2
(1)求过点P(-4,0)且与函数f(x)的图像相切的直线方程(2)求证:当x1,x2∈[1,3]时,总有|f(x1)-f(x2)|≤5成立(3)若当x1,x2∈[m,m...
(1)求过点P(-4,0)且与函数f(x)的图像相切的直线方程
(2)求证:当x1,x2∈[1,3]时,总有|f(x1)-f(x2)|≤5成立
(3)若当x1,x2∈[m,m+1](m>0)时,总有|f(x1)-f(x2)|≤3成立,求实数m的取值范围 展开
(2)求证:当x1,x2∈[1,3]时,总有|f(x1)-f(x2)|≤5成立
(3)若当x1,x2∈[m,m+1](m>0)时,总有|f(x1)-f(x2)|≤3成立,求实数m的取值范围 展开
3个回答
展开全部
(1) f(x) = x³ - ax² - 4x + 4a
f'(x) = 3x² - 2ax - 4
x = 2, f'(x) = 12 - 4a - 4 = 0, a = 2
f'(x) = 3x² - 4x - 4 = (3x + 2)(x - 2)
f(x) = x³ - 2x² - 4x + 8 = (x + 2)(x - 2)²
P不在f(x)上, 设切点Q(b, (b + 2)(b - 2)²)
f'(b) = (3b + 2)(b - 2)
切线: y - (b + 2)(b - 2)² = (3b + 2)(b - 2)(x - b)
过点P: 0 - (b + 2)(b - 2)² = (3b + 2)(b - 2)(-4 - b)
(b - 2)(b² + 7b + b = 0
(b - 2)(b + 1)(b + 6) = 0
b = 2,Q(2, 0), 切线: y = 0
b = -1, Q(-1, 9), 切线: y = 3x + 12 = 3(x + 4)
b = -6, Q(-6, -256), 切线: y = 128x + 512 = 128(x + 4)
(2) 显然f(2) = 0为极小值点(1 < x < 2: f'(x)>0; 2 < x < 3: f'(x) > 0)
f(1) = 3, f(3) = 5
只须比较(f3), f(2), |f(3) - f(2)| = 5
|f(x1)-f(x2)|≤5
(3)不妨设x1 < x2
(i) m ≥ 2, f'(x) > 0
|f(x2) - f(x1)| = f(x2) - f(x1) ≤ f(m+1) - f(m) = 3m² - m - 5 ≤ 3
3m² - m - 8 ≤ 0
(1 - √97)/6 ≤ m ≤ (1 + √97)/6 < 2
结合前提: 无解
(ii)0 < m ≤ 1, f'(x) < 0
|f(x2) - f(x1)| = f(x1) - f(x2) ≤ f(m) - f(m + 1) = -3m² + m + 5 ≤ 3
3m² - m - 2 ≤ 0
(3m + 2)(m - 1) ≥ 0
m ≥ 1或m ≤ -2/3
结合前提: m= 1
(iii) 1 < m < 2
此时极小值点f(2) = 0在[m, m+1]内
此时只须f(m)≤ 3且f(m+1) ≤ 3
f(m) - 3 = m³ - 2m² - 4m + 5 = (m - 1)[m - (1 - √21)/2][m - (1 + √21)/2] ≤ 0
m ≤ (1 - √21)/2 < 0, 舍去
或1 < m < (1 + √21)/2 (a)
f(m+1) - 3 = m³ + m² - 5m = m[m - (-1 - √21)/2][m - (-1 + √21)/2] ≤ 0
m ≤ (-1 - √21)/2 < 0, 舍去
或0 < m < (-1 + √21)/2 (b)
结合(a)(b): 1 < m <(-1 + √21)/2
结合(i)(ii)(iii):
1 ≤ m <(-1 + √21)/2
f'(x) = 3x² - 2ax - 4
x = 2, f'(x) = 12 - 4a - 4 = 0, a = 2
f'(x) = 3x² - 4x - 4 = (3x + 2)(x - 2)
f(x) = x³ - 2x² - 4x + 8 = (x + 2)(x - 2)²
P不在f(x)上, 设切点Q(b, (b + 2)(b - 2)²)
f'(b) = (3b + 2)(b - 2)
切线: y - (b + 2)(b - 2)² = (3b + 2)(b - 2)(x - b)
过点P: 0 - (b + 2)(b - 2)² = (3b + 2)(b - 2)(-4 - b)
(b - 2)(b² + 7b + b = 0
(b - 2)(b + 1)(b + 6) = 0
b = 2,Q(2, 0), 切线: y = 0
b = -1, Q(-1, 9), 切线: y = 3x + 12 = 3(x + 4)
b = -6, Q(-6, -256), 切线: y = 128x + 512 = 128(x + 4)
(2) 显然f(2) = 0为极小值点(1 < x < 2: f'(x)>0; 2 < x < 3: f'(x) > 0)
f(1) = 3, f(3) = 5
只须比较(f3), f(2), |f(3) - f(2)| = 5
|f(x1)-f(x2)|≤5
(3)不妨设x1 < x2
(i) m ≥ 2, f'(x) > 0
|f(x2) - f(x1)| = f(x2) - f(x1) ≤ f(m+1) - f(m) = 3m² - m - 5 ≤ 3
3m² - m - 8 ≤ 0
(1 - √97)/6 ≤ m ≤ (1 + √97)/6 < 2
结合前提: 无解
(ii)0 < m ≤ 1, f'(x) < 0
|f(x2) - f(x1)| = f(x1) - f(x2) ≤ f(m) - f(m + 1) = -3m² + m + 5 ≤ 3
3m² - m - 2 ≤ 0
(3m + 2)(m - 1) ≥ 0
m ≥ 1或m ≤ -2/3
结合前提: m= 1
(iii) 1 < m < 2
此时极小值点f(2) = 0在[m, m+1]内
此时只须f(m)≤ 3且f(m+1) ≤ 3
f(m) - 3 = m³ - 2m² - 4m + 5 = (m - 1)[m - (1 - √21)/2][m - (1 + √21)/2] ≤ 0
m ≤ (1 - √21)/2 < 0, 舍去
或1 < m < (1 + √21)/2 (a)
f(m+1) - 3 = m³ + m² - 5m = m[m - (-1 - √21)/2][m - (-1 + √21)/2] ≤ 0
m ≤ (-1 - √21)/2 < 0, 舍去
或0 < m < (-1 + √21)/2 (b)
结合(a)(b): 1 < m <(-1 + √21)/2
结合(i)(ii)(iii):
1 ≤ m <(-1 + √21)/2
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
2013-01-12 · 知道合伙人金融证券行家
关注
展开全部
f(x)=(x^2-4)(x-a)=x^3-ax^2-4x+4a
f'(x)=3x^2-2ax-4
一个极值点为2 => 12-4a-4=0 => a=2
f(x)=(x^2-4)(x-2)=x^3-2x^2-4x+8
f'(x)=3x^2-4x-4
(1)f'(-4)=60,所以设切线方程为y=60x+b,过(-4,0),解得b=240,所以y=60x+240
(2)f'(x)=3x^2-4x-4=0, x=2或x=-2/3后者不在[1,3]内
所以求得f(1),f(2),f(3),函数在此区间的最大值、最小值就在其中
f(1)=3 f(2)=0 f(3)=5,所以最大值为5,最小值为0。所以在[1,3]区间内|f(x1)-f(x2)|≤5恒成立
(3)同上题,求出f(m)=m^3-2m^2-4m+8
f(m+1)=(m+1)^3-2(m+1)^2-4(m+1)+8
然后要讨论m,m+1,与2的大小关系,分段来求出m范围。过程略
f'(x)=3x^2-2ax-4
一个极值点为2 => 12-4a-4=0 => a=2
f(x)=(x^2-4)(x-2)=x^3-2x^2-4x+8
f'(x)=3x^2-4x-4
(1)f'(-4)=60,所以设切线方程为y=60x+b,过(-4,0),解得b=240,所以y=60x+240
(2)f'(x)=3x^2-4x-4=0, x=2或x=-2/3后者不在[1,3]内
所以求得f(1),f(2),f(3),函数在此区间的最大值、最小值就在其中
f(1)=3 f(2)=0 f(3)=5,所以最大值为5,最小值为0。所以在[1,3]区间内|f(x1)-f(x2)|≤5恒成立
(3)同上题,求出f(m)=m^3-2m^2-4m+8
f(m+1)=(m+1)^3-2(m+1)^2-4(m+1)+8
然后要讨论m,m+1,与2的大小关系,分段来求出m范围。过程略
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先因式分解及标出各段单调性,根据极值求a,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询