已知 f(x)=x^3-3ax^2+3X+1在 区间(2,3)上至少有一个极值点。那么a的范围是

一刻永远523
高粉答主

2013-01-12 · 说的都是干货,快来关注
知道顶级答主
回答量:4.7万
采纳率:87%
帮助的人:2亿
展开全部
假设它的对立面,即:在 区间(2,3)上没有极值点。
f'(x)=3x²-6ax+3

由题意:
f'(2)×f'(3)>0即:

(12-12a+3)(27-18a+3)>0
(12a-15)(18a-30)>0
a>5分之4或者a<5分之3
因为假设的是对立面,
所以:5分之3≤a≤5分之4时,在区间(2,3)上至少有一个极值点
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式