试分别画出自顶点1出发进行遍历所得的深度优先生成树和广度优先生成树。

这2个生成树是怎么画出来的求详细的过程求配上文字讲解.... 这2个生成树是怎么画出来的 求详细的过程
求配上文字讲解.
展开
 我来答
当代教育科技知识库
高能答主

2019-06-28 · 擅长科技新能源相关技术,且研究历史文化。
当代教育科技知识库
采纳数:1828 获赞数:387383

向TA提问 私信TA
展开全部

从1开始,1连接7,7连接3,3连接4,4连接5,5连接6,6连接2(1已经连过了)(2连接了3,7,但是3和7都已经连过,所以回到上一级6,6的连接是1,2都已经连过,所以再回到上一级5)5连接10 。

(10连接1,6都已经连过了,所以回到上一级5,但是5的所有连接点都连过了,所以回到上一级4)4连接9,(9连接5,10都已经连过了,所以回到上一级4,4也已经练完了,所以再回到上一级3)3连接8,至此连完。

广度遍历:从1开始,连接7和9,下一个是7,连接3和10 ,下一个是9,连接5,下一个是3,连接4和8,下一个是10 连接6,下一个是5,没有什么连接的,下一个是4,没有什么连接的,下一个是8,没有什么连接的,下一个是6,连接2,至此连完。

扩展资料:

通用定义:

若从图的某顶点出发,可以系统地访问到图中所有顶点,则遍历时经过的边和图的所有顶点所构成的子图,称作该图的生成树。

(1)若G是强连通的有向图,则从其中任一顶点v出发,都可以访问遍G中的所有顶点,从而得到以v为根的生成树。

(2)若G是有根的有向图,设根为v,则从根v出发可以完成对G的遍历,得到G的以v为根的生成树。

(3)若G是非连通的无向图,则要若干次从外部调用DFS(或BFS)算法,才能完成对G的遍历。每一次外部调用,只能访问到G的一个连通分量的顶点集,这些顶点和遍历时所经过的边构成了该连通分量的一棵DFS(或BPS)生成树。

G的各个连通分量的DFS(或BFS)生成树组成了G的DFS(或BFS)生成森林。

(4)若G是非强连通的有向图,且源点又不是有向图的根,则遍历时一般也只能得到该有向图的生成森林。

参考资料来源:百度百科-生成树算法

光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式