f(x)在[0,1]上连续,在(0,1)内可导。 f(0)=f(1)=0,f(1/2)=1,证明在(0,1)内至少存在一点使f'(x)=1 1个回答 #热议# 在购买新能源车时,要注意哪些? 栾思天3v 2013-01-14 · TA获得超过308个赞 知道小有建树答主 回答量:372 采纳率:0% 帮助的人:193万 我也去答题访问个人页 关注 展开全部 令g(x)=f(x)-x,g(0)=0,g(1)=-1,g(1/2)=1/2,由介值定理(这里也可以是零点定理)可知在x=1/2到1之间有一点可使得g(x)等于0,再由罗尔定理易知:在(0,1)上有一点可使得g'(x)=0,那么g'(x)=f'(x)-1=0,即:f'(x)=1 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2021-10-24 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1 1 2020-12-14 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f"(ξ)+f"(η)=0? 2 2021-01-26 设f(x)在[0,1].上连续,在(0,1)内可导,且f(1)=f(0)=0,证明:在(0,1? 1 2022-08-24 f(x)在[0,1]上连续并且在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,证明存在ξ,使得f'(ξ)=1 2022-06-26 f(x)在[0,1]连续,在(0,1)可导,f(0)=f(1)=0,证(0,1)存在ξ,f'(ξ)+2f(ξ)=0 2019-05-08 设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(x)=-f(ε)/ε。 32 2016-12-01 设f(x)在【0,1】上连续,在(0,1)内可导,且f(1)=0.证明:存在ξ∈(0,1),使f'(ξ)=-f(ξ)/ξ 7 2019-05-27 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明存在一点ξ∈(0,1),使得2f(ξ)+ξf'(ξ)=0 1 更多类似问题 > 为你推荐: