一道高一数学题,要求有详细过程。
abc为非零实数,(a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz)^2,求证x/a=y/b=z/c...
abc为非零实数,(a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz)^2,求证x/a=y/b=z/c
展开
1个回答
展开全部
您好:
因为:(x^2+y^2+z^2)(a^2+b^2+c^2) =(ax)^2+(bx)^2+(cx)^2+(ay)^2+(by)^2+(cy)^2+(az)^2+(bz)^2+(cz)^2
而:(ax+by+cz)^2=(ax)^2+(by)^2+(cz)^2+2abxy+2acxz+2bcyz
则有:(bx)^2+(cx)^2+(ay)^2+(cy)^2+(az)^2+(bz)^2=2abxy+2acxz+2bcyz (ay-bx)^2+(az-cx)^2+(bz-cy)^2=0
固:ay=bx,az=cx,bz=cy
所以:x/a=y/b=z/c
希望我的回答您能满意!
因为:(x^2+y^2+z^2)(a^2+b^2+c^2) =(ax)^2+(bx)^2+(cx)^2+(ay)^2+(by)^2+(cy)^2+(az)^2+(bz)^2+(cz)^2
而:(ax+by+cz)^2=(ax)^2+(by)^2+(cz)^2+2abxy+2acxz+2bcyz
则有:(bx)^2+(cx)^2+(ay)^2+(cy)^2+(az)^2+(bz)^2=2abxy+2acxz+2bcyz (ay-bx)^2+(az-cx)^2+(bz-cy)^2=0
固:ay=bx,az=cx,bz=cy
所以:x/a=y/b=z/c
希望我的回答您能满意!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询