如何证明该n阶矩阵的所有顺序主子式都大于0?
11/20···001/211/2···0001/21···00······000···11/2000···1/21这是一个n阶矩阵,如何证明它的所有顺序主子式都大于0呀...
1 1/2 0 ··· 0 0
1/2 1 1/2 ··· 0 0
0 1/2 1 ··· 0 0
······
0 0 0 ··· 1 1/2
0 0 0 ··· 1/2 1
这是一个n阶矩阵,如何证明它的所有顺序主子式都大于0呀?
我已经倒出来了k和k-1/k-2阶顺序主子式的递推关系
Dk=D(k-1) — 1/4*D(k-2) 展开
1/2 1 1/2 ··· 0 0
0 1/2 1 ··· 0 0
······
0 0 0 ··· 1 1/2
0 0 0 ··· 1/2 1
这是一个n阶矩阵,如何证明它的所有顺序主子式都大于0呀?
我已经倒出来了k和k-1/k-2阶顺序主子式的递推关系
Dk=D(k-1) — 1/4*D(k-2) 展开
2个回答
展开全部
这就是证明矩阵正定嘛!
这个矩阵对应二次型:f=∑[i=1,n]xi^2+∑[i=1,n-1]xix(i+1)①
那么证明这个二次型正定即可。
将原式(①)展开配方整理得:
f=(x1+(1/2)∑[j=2,n]xj)^2+(3/4)(x2+(1/3)∑[j=3,n]xj)^2
+...+[n/(2n-2)](x(n-1)+xn/n)^2+[(n+1)/(2n)]xn^2
令:
y1=x1+(1/2)∑[j=2,n]xj
y2=x2+(1/3)∑[j=3,n]xj
......
y(n-1)=x(n-1)+xn/n
yn=xn
即:
x1=y1-y2/2-y3/3-...-y(n-1)/(n-1)-yn/n
x2=y2-y3/3-...-y(n-1)/yn
......
x(n-1)=y(n-1)-yn/n
xn=yn
则原二次型化为f=y1^2+3y2^2/4+...+ny(n-1)^2/(2n-2)+(n+1)yn^2/(2n)
线性替换的矩阵为T=
1 -1/2 -1/3 ... -1/(n-1) -1/n
0 1 -1/3 ... -1/(n-1) -1/n
0 0 1 ... -1/(n-1) -1/n
.........................................
0 0 0 ... 1 -1/n
0 0 0 ... 0 1
则T'AT=diag{1,3/4,4/6,...,n/(2n-2),(n+1)/(2n)}
为正定二次型
这个矩阵对应二次型:f=∑[i=1,n]xi^2+∑[i=1,n-1]xix(i+1)①
那么证明这个二次型正定即可。
将原式(①)展开配方整理得:
f=(x1+(1/2)∑[j=2,n]xj)^2+(3/4)(x2+(1/3)∑[j=3,n]xj)^2
+...+[n/(2n-2)](x(n-1)+xn/n)^2+[(n+1)/(2n)]xn^2
令:
y1=x1+(1/2)∑[j=2,n]xj
y2=x2+(1/3)∑[j=3,n]xj
......
y(n-1)=x(n-1)+xn/n
yn=xn
即:
x1=y1-y2/2-y3/3-...-y(n-1)/(n-1)-yn/n
x2=y2-y3/3-...-y(n-1)/yn
......
x(n-1)=y(n-1)-yn/n
xn=yn
则原二次型化为f=y1^2+3y2^2/4+...+ny(n-1)^2/(2n-2)+(n+1)yn^2/(2n)
线性替换的矩阵为T=
1 -1/2 -1/3 ... -1/(n-1) -1/n
0 1 -1/3 ... -1/(n-1) -1/n
0 0 1 ... -1/(n-1) -1/n
.........................................
0 0 0 ... 1 -1/n
0 0 0 ... 0 1
则T'AT=diag{1,3/4,4/6,...,n/(2n-2),(n+1)/(2n)}
为正定二次型
追问
我就是不想用配方法做所以才换一种方法问的。
追答
数学归纳法,没有技术难题,不懂的问我!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询