如何证明该n阶矩阵的所有顺序主子式都大于0?

11/20···001/211/2···0001/21···00······000···11/2000···1/21这是一个n阶矩阵,如何证明它的所有顺序主子式都大于0呀... 1 1/2 0 ··· 0 0
1/2 1 1/2 ··· 0 0
0 1/2 1 ··· 0 0
······
0 0 0 ··· 1 1/2
0 0 0 ··· 1/2 1
这是一个n阶矩阵,如何证明它的所有顺序主子式都大于0呀?
我已经倒出来了k和k-1/k-2阶顺序主子式的递推关系
Dk=D(k-1) — 1/4*D(k-2)
展开
百度网友c92221e2b
2013-01-19 · TA获得超过1931个赞
知道小有建树答主
回答量:907
采纳率:100%
帮助的人:269万
展开全部
这就是证明矩阵正定嘛!
这个矩阵对应二次型:f=∑[i=1,n]xi^2+∑[i=1,n-1]xix(i+1)①
那么证明这个二次型正定即可。
将原式(①)展开配方整理得:
f=(x1+(1/2)∑[j=2,n]xj)^2+(3/4)(x2+(1/3)∑[j=3,n]xj)^2
+...+[n/(2n-2)](x(n-1)+xn/n)^2+[(n+1)/(2n)]xn^2
令:
y1=x1+(1/2)∑[j=2,n]xj
y2=x2+(1/3)∑[j=3,n]xj
......
y(n-1)=x(n-1)+xn/n
yn=xn
即:
x1=y1-y2/2-y3/3-...-y(n-1)/(n-1)-yn/n
x2=y2-y3/3-...-y(n-1)/yn
......
x(n-1)=y(n-1)-yn/n
xn=yn
则原二次型化为f=y1^2+3y2^2/4+...+ny(n-1)^2/(2n-2)+(n+1)yn^2/(2n)
线性替换的矩阵为T=
1 -1/2 -1/3 ... -1/(n-1) -1/n
0 1 -1/3 ... -1/(n-1) -1/n
0 0 1 ... -1/(n-1) -1/n
.........................................
0 0 0 ... 1 -1/n
0 0 0 ... 0 1
则T'AT=diag{1,3/4,4/6,...,n/(2n-2),(n+1)/(2n)}
为正定二次型
追问
我就是不想用配方法做所以才换一种方法问的。
追答
数学归纳法,没有技术难题,不懂的问我!
电灯剑客
科技发烧友

2013-01-20 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4830万
展开全部
既然已经推出D(k)=D(k-1)-D(k-2)/4,该递推关系的特征多项式是x^2-x+1/4
利用特征值法可知D(k)的通项公式为D(k)=(1/2)^n(c1+c2*k),代入两个初值解出D(k)=(n+1)/2^n即可

仅就这个问题而言更省事的证法是先用圆盘定理得到该矩阵的特征值非负,再注意它是有两行严格占优的不可约对角占优阵,必定非奇异,从而正定

楼上的方法最好也掌握,另外最好知道该矩阵的谱分解
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式