高中数学,指数函数及其性质
1个回答
展开全部
12、这个讨论
a>1时,a/(a^2-1)>0,是一个正值不影响函数单调性
a^x为增函数,a^(-x)为减函数,-a^(-x)为增函数,
那么a^x-a^(-x)为增函数,整体f(x)为增函数。
a<1时,a/(a^2-1)<0,是一个负值,影响函数单调性为相反的
a^x为减函数,a^(-x)为增函数,-a^(-x)为减函数,
那么a^x-a^(-x)为减函数,整理f(x)为增函数。
即f(x)为增函数
或者不讨论,直接求f'(x)
f'(x)=a/(a^2-1)*(a^x+a^(-x))*lna
其中a>0,a^x+a^(-x)>0
存在变化的是lna/(a^2-1)
当a>1时,lna>0,a^2-1>0
f'(x)>0
当a<1时,lna<0,a^2-1<0
f'(x)>0
即f(x)为单调增函数
a^2表示a的平方,其中^表示次方数,a^b表示a的b次方,如a^0.5表示根号a
a>1时,a/(a^2-1)>0,是一个正值不影响函数单调性
a^x为增函数,a^(-x)为减函数,-a^(-x)为增函数,
那么a^x-a^(-x)为增函数,整体f(x)为增函数。
a<1时,a/(a^2-1)<0,是一个负值,影响函数单调性为相反的
a^x为减函数,a^(-x)为增函数,-a^(-x)为减函数,
那么a^x-a^(-x)为减函数,整理f(x)为增函数。
即f(x)为增函数
或者不讨论,直接求f'(x)
f'(x)=a/(a^2-1)*(a^x+a^(-x))*lna
其中a>0,a^x+a^(-x)>0
存在变化的是lna/(a^2-1)
当a>1时,lna>0,a^2-1>0
f'(x)>0
当a<1时,lna<0,a^2-1<0
f'(x)>0
即f(x)为单调增函数
a^2表示a的平方,其中^表示次方数,a^b表示a的b次方,如a^0.5表示根号a
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询