两道因式分解
n²+n²(n+1)²+(n+1)²2a^4+2b^4+2c^4-2a²b²-2b²c²-...
n²+n²(n+1)²+(n+1)²
2a^4+2b^4+2c^4-2a²b²-2b²c²-2a²c² 展开
2a^4+2b^4+2c^4-2a²b²-2b²c²-2a²c² 展开
3个回答
展开全部
解:n²+n²(n+1)²+(n+1)²=[n(n+1)]²+2n²+2n+1=[n(n+1)]²+2n(n+1)+1=[n(n+1)+1]²=(n²+n+1)²
2a^4+2b^4+2c^4-2a²b²-2b²c²-2a²c²=(a²-b²)²+(b²-c²)²+(a²-c²)²
2a^4+2b^4+2c^4-2a²b²-2b²c²-2a²c²=(a²-b²)²+(b²-c²)²+(a²-c²)²
追问
第二道不能再分解了吗?
追答
貌似不能分解。主元法,把a²当作未知数,原式=2(a²)²-2(b²+c²)a²+[2(b²)²+2(c²)²-2b²c²]
当b²≠c²时,判别式小于0.
展开全部
(1)n^2+n^2*(n+1)^2+(n+1)^2
=n^2+n^2(n+1)*(n+1)+(n+1)^2
=n^2+n^3(n+1)+n^2(n+1)+(n+1)^2
=n^4+n^2(n+1)+n^2(n+1)+(n+1)^2
=(n^2+n+1)^2
=n^2+n^2(n+1)*(n+1)+(n+1)^2
=n^2+n^3(n+1)+n^2(n+1)+(n+1)^2
=n^4+n^2(n+1)+n^2(n+1)+(n+1)^2
=(n^2+n+1)^2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)n^2+n^2*(n+1)^2+(n+1)^2
=n^2+n^2(n+1)*(n+1)+(n+1)^2
=n^2+n^3(n+1)+n^2(n+1)+(n+1)^2
=n^4+n^2(n+1)+n^2(n+1)+(n+1)^2
=(n^2+n+1)^2
2a^4+2b^4+2c^4-2a²b²-2b²c²-2a²c
=(a²-b²)²+(b²-c²)²+(a²-c²)²望采纳o(∩_∩)o...
=n^2+n^2(n+1)*(n+1)+(n+1)^2
=n^2+n^3(n+1)+n^2(n+1)+(n+1)^2
=n^4+n^2(n+1)+n^2(n+1)+(n+1)^2
=(n^2+n+1)^2
2a^4+2b^4+2c^4-2a²b²-2b²c²-2a²c
=(a²-b²)²+(b²-c²)²+(a²-c²)²望采纳o(∩_∩)o...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询