已知函数f(x)=sin(π/2-x)+sinx
已知函数f(x)=sin(π/2-x)+sinx(1)求函数y=f(x)的单调递增区间(2)若f(a-π/4)=根号2/3,求f(2a+π/4)的值...
已知函数f(x)=sin(π/2-x)+sinx
(1)求函数y=f(x)的单调递增区间
(2)若f(a-π/4)=根号2/3,求f(2a+π/4)的值 展开
(1)求函数y=f(x)的单调递增区间
(2)若f(a-π/4)=根号2/3,求f(2a+π/4)的值 展开
3个回答
展开全部
解:∵f(x)=sin[(π/2)-x]+sinx
=√2[(√2/2)cosx+(√2/2)sinx]
=√2[sin(π/4)cosx+cos(π/4)sinx]
=√2sin[x+(π/4)]
又∵y=sinx在[-π/2,π/2]上单调递增,
即:-π/2≤x≤π/2
∴-π/2≤x+(π/4)≤π/2
整理得:-3π/4≤x≤π/4
∴f(x)在2kπ-(3π/4)≤x≤2kπ+(π/4)(k∈Z)上单调递增;
同理,∵sinx在[π/2,3π/2]上单调递减;
∴π/2≤x+(π/4)≤3π/2
整理得:π/4≤x≤5π/4
∴f(x)在2kπ+(π/4)≤x≤2kπ+(5π/4)(k∈Z)上单调递减;
∵f(a-π/4)=√2/3
∴f(a-π/4)=√2sin[(a-π/4)+(π/4)
=√2sina
即√2sina=√2/3
∴sina=1/3
sina^2=1/9
cosa^2=1-(1/3)^2
=8/9
f(2a+π/4)=√2sin[(2a+π/4)+(π/4)]
=√2sin(2a+π/2]
=-√2cos2a
=-√2(cosa^2-sina^2)
=-√2[(8/9)-(1/9)]
=-7√2/9
=√2[(√2/2)cosx+(√2/2)sinx]
=√2[sin(π/4)cosx+cos(π/4)sinx]
=√2sin[x+(π/4)]
又∵y=sinx在[-π/2,π/2]上单调递增,
即:-π/2≤x≤π/2
∴-π/2≤x+(π/4)≤π/2
整理得:-3π/4≤x≤π/4
∴f(x)在2kπ-(3π/4)≤x≤2kπ+(π/4)(k∈Z)上单调递增;
同理,∵sinx在[π/2,3π/2]上单调递减;
∴π/2≤x+(π/4)≤3π/2
整理得:π/4≤x≤5π/4
∴f(x)在2kπ+(π/4)≤x≤2kπ+(5π/4)(k∈Z)上单调递减;
∵f(a-π/4)=√2/3
∴f(a-π/4)=√2sin[(a-π/4)+(π/4)
=√2sina
即√2sina=√2/3
∴sina=1/3
sina^2=1/9
cosa^2=1-(1/3)^2
=8/9
f(2a+π/4)=√2sin[(2a+π/4)+(π/4)]
=√2sin(2a+π/2]
=-√2cos2a
=-√2(cosa^2-sina^2)
=-√2[(8/9)-(1/9)]
=-7√2/9
展开全部
f(x)=cosx+sinx
f(x)=√2sin(x+π/4)
(1)递增区间:2kπ-π/2≤x+π/4≤2kπ+π/2
得:2kπ-3/4π≤x≤2kπ+π/4
递增区间是:[2kπ-3π/4,2kπ+π/4],其中k∈Z
(2)f(a-π/4)=√2sina=√2/3
则:sina=1/3
f(2a+π/4)=√2sin(2a+π/2)=√2cos2a=√2[1-2sin²a]=(7/9)√2
f(x)=√2sin(x+π/4)
(1)递增区间:2kπ-π/2≤x+π/4≤2kπ+π/2
得:2kπ-3/4π≤x≤2kπ+π/4
递增区间是:[2kπ-3π/4,2kπ+π/4],其中k∈Z
(2)f(a-π/4)=√2sina=√2/3
则:sina=1/3
f(2a+π/4)=√2sin(2a+π/2)=√2cos2a=√2[1-2sin²a]=(7/9)√2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)f(x)=cosx+sinx=根号2乘以sin(x+π/4)
由-π/2+2Kπ<=x+π/4<=π/2+2Kπ解得单调区间[-π3/4+2Kπ,π/4+2Kπ]
(2)f(x)=cosx+sinx=根号2乘以sin(x+π/4)
f(a-π/4)=根号2乘以sin(a)=根号2/3,所以sina=1/3
f(2a+π/4)=根号2乘以sin(2a+π/2)=sin2a=2sinacosa
由-π/2+2Kπ<=x+π/4<=π/2+2Kπ解得单调区间[-π3/4+2Kπ,π/4+2Kπ]
(2)f(x)=cosx+sinx=根号2乘以sin(x+π/4)
f(a-π/4)=根号2乘以sin(a)=根号2/3,所以sina=1/3
f(2a+π/4)=根号2乘以sin(2a+π/2)=sin2a=2sinacosa
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |