如图1,已知△ABC,分别以AB、AC 为边作△ABD和△ACE,且AD =AB,AC=AE ,∠DAB
如图1,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE。(1)求证:△DAC≌△BAE;(2)F、H...
如图1,已知△ABC,分别以AB、AC 为边作△ABD和△ACE,且AD =AB,AC=AE ,∠DAB=∠CAE,连接DC与BE。(1)求证:△DAC≌△BAE;(2)F、H分别是BE与DC的中点(1)如图2.当∠DAB=∠CAE=90°时,求∠AFH的度数,(2)请探究当∠DAB等于多少度时,AF=FH? 请说明理由.
展开
1个回答
展开全部
(1)∵∠DAC=∠DAB+∠BAC
∠BAE=∠CAE+∠BAC
又∵∠DAB=∠CAE
∴∠DAC= ∠BAE
∵AD=AB,AC=AE
所以:△DAC≌△BAE(SAS)
(2)由于△DAC≌△BAE
有BE=CD,从而有BF=DH.
连接AH,可证明△BAF≌△DAH(SSS),
得∠DAH=∠BAF
左右同时减∠BAH得:∠DAH-∠BAH=∠BAF-∠BAH
即∠DAB=∠HAF=90°.
在△HAF中,根据等腰三角形性质及三角形内角和定理,
已知∠HAF=90°,
可求∠AFH=45°.
∠BAE=∠CAE+∠BAC
又∵∠DAB=∠CAE
∴∠DAC= ∠BAE
∵AD=AB,AC=AE
所以:△DAC≌△BAE(SAS)
(2)由于△DAC≌△BAE
有BE=CD,从而有BF=DH.
连接AH,可证明△BAF≌△DAH(SSS),
得∠DAH=∠BAF
左右同时减∠BAH得:∠DAH-∠BAH=∠BAF-∠BAH
即∠DAB=∠HAF=90°.
在△HAF中,根据等腰三角形性质及三角形内角和定理,
已知∠HAF=90°,
可求∠AFH=45°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询