已知AB与⊙O相切于点C,OA=OB,OA.OB与⊙O分别交于点D.E,若直径为8,AB=10,求OA的长

连接CD,CE,若四边形ODCE为菱形,求OD/OA的值... 连接CD,CE,若四边形ODCE为菱形,求OD/OA的值 展开
周庄镇4
2013-04-11 · TA获得超过239个赞
知道答主
回答量:23
采纳率:0%
帮助的人:15.3万
展开全部
切线的性质;含30度角的直角三角形;勾股定理;菱形的性质.
专题:几何图形问题.
分析:(1)连接OC,根据切线的性质得出OC⊥AB,再由勾股定理求得OA即可;
(2)根据菱形的性质,求得OD=CD,则△ODC为等边三角形,可得出∠A=30°,即可求得 OD/OA 的值.
--解:(1)如图①,连接OC,则OC=4,
∵AB与⊙O相切于点C,∴OC⊥AB,
∴在△OAB中,由AO=OB,AB=10,
得AC=1 /2 AB=5.
在Rt△AOC中,由勾股定理得OA= √(OC²+AC²) =√ (42+52) = √41 ;

(2)如图②,连接OC,则OC=OD,
∵四边形ODCE为菱形,∴OD=CD,
∴△ODC为等边三角形,有∠AOC=60°.
由(1)知,∠OCA=90°,∴∠A=30°,
∴OC=1 /2 OA,∴OD /OA =1 /2 .
265380s
2013-01-25 · TA获得超过4907个赞
知道小有建树答主
回答量:1220
采纳率:80%
帮助的人:255万
展开全部
答:解:(1)如图①,连接OC,则OC=4,
∵AB与⊙O相切于点C,∴OC⊥AB,
∴在△OAB中,由AO=OB,AB=10,
得AC=1 /2 AB=5.
在Rt△AOC中,由勾股定理得OA= √(OC²+AC²) =√ (42+52) = √41 ;

(2)如图②,连接OC,则OC=OD,
∵四边形ODCE为菱形,∴OD=CD,
∴△ODC为等边三角形,有∠AOC=60°.
由(1)知,∠OCA=90°,∴∠A=30°,
∴OC=1 /2 OA,∴OD /OA =1 /2 .
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式