展开全部
先用换元法令u=x–z,v=y–z,则复合函数F(x–z,=y–z)是关于x,y的复合函数,u,v,z是中间变量,根据多元复合函数的求导法则。
两边同时对y求导有1+∂z/∂y=xf'(y²-z²)(2y-2z∂z/∂y),故f'(y²-z²)=(1+∂z/∂y)/(2xy-2xz∂z/∂y)。
联立两式消去f'(y²-z²),有[x/(y+z)]∂z/∂x=1/[1+(z+z∂z/∂y)/(y-z∂z/∂y)]=(y-z∂z/∂y)/(y+z)。
所以,化简移项即有x∂z/∂x-z∂z/∂y=y。
扩展资料:
隐函数导数求解的一般方法:
1、先把隐函数转化成显函数,再利用显函数求导的方法求导;
2、隐函数左右两边对x求导(但要注意把y看作x的函数);
3、利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询