求大神解决:高数~微分中值定理证明题!需详细步骤,最好讲解一下。在线等哟😊 10
1个回答
展开全部
微分中值定理是一系列中值定理总称。有:费马中值定理,罗尔定理,泰勒公式,拉格朗日中值定理,洛必达法则,柯西中值定理,达布定理。可以说其他中值定理都是拉格朗日中值定理的特殊情况或推广。
费马中值定理内容:设函数f(x)在ξ处取得极值,且f(x)在点ξ处可导,则f'(ξ)=0。推论:若函数f(x)在区间I上的最大值(最小值)在I内的点c处达到,且f(x)在点c处可导,则f'(c)=0。
罗尔定理内容:如果函数f(x)满足:在闭区间[a,b]上连续;在开区间(a,b)内可导;在区间端点处的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点ξ(a<ξ<b),使得 f'(ξ)=0。
泰勒公式内容 :若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!·(x-x.)^2,+f'''(x.)/3!·(x-x.)^3+……+f(n)(x.)/n!·(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!·(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。)推论:麦克劳林公式。
麦克劳林公式内容:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:f(x)=f(0)+f'(0)x+f''(0)/2!·x^2,+f'''(0)/3!·x^3+……+f(n)(0)/n!·x^n+Rn其中Rn=f(n+1)(θx)/(n+1)!·x^(n+1),这里0<θ<1。
拉格朗日中值定理内容:如果函数 f(x) 满足:1)在闭区间[a,b]上连续;2)在开区间(a,b)内可导。 那么:在(a,b)内至少有一点ξ(a<ξ<b),使等式 f(b)-f(a)=f′(ξ)(b-a) 成立。
洛必达法则内容:设
(1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;
(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么x→a时,lim f(x)/F(x)=lim f'(x)/F'(x)。
又设
(1)当x→∞时,函数f(x)及F(x)都趋于零;
(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。
柯西中值定理内容:
如果函数f(x)及F(x)满足
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
(3)对任一x(a,b),F'(x)≠0 那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ) 成立。
达布定理内容:若函数f(x)在[a,b]上可导,则f′(x)在[a,b]上可取f′(a)和f′(b)之间任何值。推广:若f(x),g(x)均在[a,b]上可导,并且在[a,b]上,g′(x)≠0,则f′(x)/g′(x)可以取f′(a)/g′(a)与f′(b)/g′(b)之间任何值。
费马中值定理内容:设函数f(x)在ξ处取得极值,且f(x)在点ξ处可导,则f'(ξ)=0。推论:若函数f(x)在区间I上的最大值(最小值)在I内的点c处达到,且f(x)在点c处可导,则f'(c)=0。
罗尔定理内容:如果函数f(x)满足:在闭区间[a,b]上连续;在开区间(a,b)内可导;在区间端点处的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点ξ(a<ξ<b),使得 f'(ξ)=0。
泰勒公式内容 :若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!·(x-x.)^2,+f'''(x.)/3!·(x-x.)^3+……+f(n)(x.)/n!·(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!·(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。)推论:麦克劳林公式。
麦克劳林公式内容:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:f(x)=f(0)+f'(0)x+f''(0)/2!·x^2,+f'''(0)/3!·x^3+……+f(n)(0)/n!·x^n+Rn其中Rn=f(n+1)(θx)/(n+1)!·x^(n+1),这里0<θ<1。
拉格朗日中值定理内容:如果函数 f(x) 满足:1)在闭区间[a,b]上连续;2)在开区间(a,b)内可导。 那么:在(a,b)内至少有一点ξ(a<ξ<b),使等式 f(b)-f(a)=f′(ξ)(b-a) 成立。
洛必达法则内容:设
(1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;
(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么x→a时,lim f(x)/F(x)=lim f'(x)/F'(x)。
又设
(1)当x→∞时,函数f(x)及F(x)都趋于零;
(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。
柯西中值定理内容:
如果函数f(x)及F(x)满足
(1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导;
(3)对任一x(a,b),F'(x)≠0 那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ) 成立。
达布定理内容:若函数f(x)在[a,b]上可导,则f′(x)在[a,b]上可取f′(a)和f′(b)之间任何值。推广:若f(x),g(x)均在[a,b]上可导,并且在[a,b]上,g′(x)≠0,则f′(x)/g′(x)可以取f′(a)/g′(a)与f′(b)/g′(b)之间任何值。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询