有一直径为2m的圆形纸片,要从中剪去一个最大的圆心角是90°的扇形ABC(如图).(1)求被剪掉的阴影部分

有一直径为2m的圆形纸片,要从中剪去一个最大的圆心角是90°的扇形ABC(如图).(1)求被剪掉的阴影部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径... 有一直径为2m的圆形纸片,要从中剪去一个最大的圆心角是90°的扇形ABC(如图).(1)求被剪掉的阴影部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?(3)求圆锥的全面积. 展开
 我来答
爵殿43
推荐于2016-03-25 · TA获得超过103个赞
知道答主
回答量:162
采纳率:77%
帮助的人:83.5万
展开全部
解答:解:(1)连接BC,∵∠A=90°,
∴BC为⊙O的直径.
在Rt△ABC中,AB=AC,且AB2+AC2=BC2
∴AB=AC=1,
∴S阴影=S⊙O-S扇形ABC=π?(
2
2
2-
90π×12
360
=
1
2
π-
1
4
π=
1
4
π(m2);

(2)设圆锥底面半径为r,则
BC
长为2πr.
90π×1
180
=2πr,
∴r=
1
4
(m);

(3)S=S+S=S扇形ABC+S=
1
4
π+(
1
4
2?π=
5
16
πm2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式