数学 二次函数

已知二次函数y=ax²+bx+c(a≠0)的图像,如图与x轴交于A(x1,0)B(x2,0)两点,且0<x1<1,1<x2<2,与y轴交于点(0,-2),且关于... 已知二次函数y=ax²+bx+c(a≠0)的图像,如图与x轴交于A(x1,0)B(x2,0)两点,且0<x1<1,1<x2<2,与y轴交于点(0,-2),且关于x的一元二次方程ax²+bx+c-m=0没有实数根,下列结论:①2a+b>1②a-b+c<0③a+b<2④m>1⑤b²+8a>0其中,正确的结论是______________。 展开
 我来答
最强大脑花
2015-10-26 · 知道合伙人历史行家
最强大脑花
知道合伙人历史行家
采纳数:13130 获赞数:394221

向TA提问 私信TA
展开全部
  数学 二次函数
  I.定义与定义表达式
  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
  二次函数表达式的右边通常为二次三项式。
  II.二次函数的三种表达式
  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
  顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]
  交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]
  注:在3种形式的互相转化中,有如下关系:
  h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a
  III.二次函数的图像
  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
  IV.抛物线的性质
  1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。
  对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
  2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
  3.二次项系数a决定抛物线的开口方向和大小。
  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
  4.一次项系数b和二次项系数a共同决定对称轴的位置。
  当a与b同号时(即ab>0),对称轴在y轴左;
  当a与b异号时(即ab<0),对称轴在y轴右。
  5.常数项c决定抛物线与y轴交点。
  抛物线与y轴交于(0,c)
  6.抛物线与x轴交点个数
  Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
  Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
  Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
  V.二次函数与一元二次方程
  特别地,二次函数(以下称函数)y=ax^2+bx+c,
  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0
  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
  当h<0时,则向左平行移动|h|个单位得到.
  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;
  当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
  因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
  (1)图象与y轴一定相交,交点坐标为(0,c);
  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
  (a≠0)的两根.这两点间的距离AB=|x₂-x₁|
  当△=0.图象与x轴只有一个交点;
  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
  5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
  6.用待定系数法求二次函数的解析式
  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
  y=ax^2+bx+c(a≠0).
  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).
  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
  
hbc3193034
2015-02-17 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
y=f(x)=ax²+bx+c(a≠0)的图像与x轴交于A(x1,0)B(x2,0),满足0<x1<1<x2<2,与y轴交于点(0,-2),
∴f(0)=c=-2,f(1)=a+b+c>0,f(2)=4a+2b+c<0,
∴a+b>2,(1)
2a+b<1,(2)
(2)-(1),a<-1.
①③错,②f(-1)=a-b+c<0,对。
由(1),2-a<b,
4-4a+a^2<b^2,
-1/a-a/4+1<-b^2/(4a),
由a<-1得-1/a-a/4>5/4,
关于x的一元二次方程ax²+bx-2-m=0没有实数根,
<==>m>y的最大值=-2-b^2/(4a)>-2+5/4+1=1/4,
两边都乘以-4a,得b^2+8a>-a>1.
④错,⑤对。
选②⑤。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式