如下图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG。(1)求证:①DE=D

如下图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG。(1)求证:①DE=DG;②DE⊥DG;(2)尺规作图:以线段DE,... 如下图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG。(1)求证:①DE=DG; ②DE⊥DG;(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想;(4)当 时,请直接写出 的值。 展开
 我来答
牟厹煦0j50bc
推荐于2016-02-15 · TA获得超过124个赞
知道答主
回答量:134
采纳率:100%
帮助的人:125万
展开全部

解:(1)∵四边形ABCD是正方形,
∴DC=DA,∠DCE=∠DAG=90°,
又∵CE=AG,
∴△DCE≌△GDA,
∴DE=DG,∠EDC=∠GDA,
又∵∠ADE+∠EDC=90°,
∴∠ADE+∠GDA=90°
∴DE⊥DG;
(2)如图:

(3)四边形CEFK为平行四边形。
证明:设CK、DE相交于M点
∵四边形ABCD和四边形DEFG都是正方形,
∴AB∥CD,AB=CD,EF=DG,EF∥DG,
∵BK=AG,
∴KG=AB=CD,
∴四边形CKGD是平行四边形,
∴CK=DG=EF,CK∥DG,
∴∠KME=∠GDE=∠DEF=90°,
∴∠KME+∠DEF=180°,
∴CK∥EF,
∴四边形CEFK为平行四边形;
(4)∵
∴设CE=x,CB=nx,
∴CD=nx,
∴DE 2 =CE 2 +CD 2 =n 2 x 2 +x 2 =(n 2 +1)x 2
∵BC 2 =n 2 x 2
= =


推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式