急求:已知f(x)在(-∞,+∞)内连续,且f(x)=∫(0→2x)f(1/2t)dt,则f '(x)
急求:已知f(x)在(-∞,+∞)内连续,且f(x)=∫(0→2x)f(1/2t)dt,则f'(x),先问f(1/2t)dt要将f(1/2t)里的1/2t看成是u变为2d...
急求:已知f(x)在(-∞,+∞)内连续,且f(x)=∫(0→2x)f(1/2t)dt,则f '(x),先问f(1/2t)dt要将f(1/2t)里的1/2t看成是u变为 2du 吗,那原式是变为 f(x)=2∫(0→2x)f(u)du ,在求导吗,那就等于 4f(x), 但答案是2f(x)....求解释,万分感谢.....
展开
3个回答
展开全部
很简单,有求变上限积分的求导公式
d/dx ∫(a→x) ƒ(t) dt = ƒ(x)
于是直接用公式就可以了
ƒ(x) = ∫(0→2x) ƒ(t/2) dt
ƒ'(x) = (2x)' • ƒ((2x)/2)
= 2ƒ(x)
通常,如果被积函数里面没有x的话,就可以直接用公式
如果有x的话,多数要用换元法,大致有两种形式
第一种是被积函数里和x有乘除关系,或无法抽出积分号外的,ƒ(xt)或ƒ(x/t)或ƒ(x² - t²)等
则d/dx ∫(0→x) ƒ(xt) dt,由于x在被积函数里又无法抽出积分号外,需要换元u = xt,du = x dt
于是等于d/dx ∫(0→x²) ƒ(u) • 1/x du = d/dx (1/x)∫(0→x²) ƒ(u) du,再用导数乘法则可以了
另一种虽然被积函数和x可能有乘除关系,但可以抽出到积分号外,例如(x - t)ƒ(t)等
则d/dx ∫(0→x) (x - t)ƒ(t) dt
= d/dx [∫(0→x) xƒ(t) dt - ∫(0→x) tƒ(t) dt]
= d/dx [x∫(0→x) ƒ(t) dt] - d/dx [∫(0→x) tƒ(t) dt]
如果用你那种换元法的话可未尝不可以
令u = t/2则du = 1/2 dt
t = 0,u = 0
t = 2x,u = 2x/2 = x
则d/dx ∫(0→2x) ƒ(t/2) dt
= d/dx ∫(0→x) ƒ(u) • 2 du
= 2 • d/dx ∫(0→x) ƒ(u) du
= 2ƒ(x)
d/dx ∫(a→x) ƒ(t) dt = ƒ(x)
于是直接用公式就可以了
ƒ(x) = ∫(0→2x) ƒ(t/2) dt
ƒ'(x) = (2x)' • ƒ((2x)/2)
= 2ƒ(x)
通常,如果被积函数里面没有x的话,就可以直接用公式
如果有x的话,多数要用换元法,大致有两种形式
第一种是被积函数里和x有乘除关系,或无法抽出积分号外的,ƒ(xt)或ƒ(x/t)或ƒ(x² - t²)等
则d/dx ∫(0→x) ƒ(xt) dt,由于x在被积函数里又无法抽出积分号外,需要换元u = xt,du = x dt
于是等于d/dx ∫(0→x²) ƒ(u) • 1/x du = d/dx (1/x)∫(0→x²) ƒ(u) du,再用导数乘法则可以了
另一种虽然被积函数和x可能有乘除关系,但可以抽出到积分号外,例如(x - t)ƒ(t)等
则d/dx ∫(0→x) (x - t)ƒ(t) dt
= d/dx [∫(0→x) xƒ(t) dt - ∫(0→x) tƒ(t) dt]
= d/dx [x∫(0→x) ƒ(t) dt] - d/dx [∫(0→x) tƒ(t) dt]
如果用你那种换元法的话可未尝不可以
令u = t/2则du = 1/2 dt
t = 0,u = 0
t = 2x,u = 2x/2 = x
则d/dx ∫(0→2x) ƒ(t/2) dt
= d/dx ∫(0→x) ƒ(u) • 2 du
= 2 • d/dx ∫(0→x) ƒ(u) du
= 2ƒ(x)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-01-25
展开全部
是f(1/2t)还是f(1/(2t)),若是f(1/2t),则答案是2f(x),
若是f[1/(2t)],则答案是2f[1/(4x)]
若是f[1/(2t)],则答案是2f[1/(4x)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询