如图①,在平行四边形ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运

如图①,在平行四边形ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运... 如图①,在平行四边形ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值. 展开
 我来答
手机用户78771
2014-11-29 · 超过65用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:122万
展开全部
(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8.
当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t.
(2)S=48t﹣48  (3)t=1或    (4)t=7,t= ,t=

解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8.
当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t.
(2)当点P与点A重合时,BP=AB,t=1.
当点P与点D重合时,AP=AD,8t﹣8=50,t=
当0<t<1时,如图①.

过点Q作QE⊥AB于E.
S ABQ = =
∴QE= = =
∴S APQ = AP×EQ= (13-13t)× =﹣30t 2 +30t.
当1<t≤ 时,如图②.

S= =
∴S=48t﹣48;
(3)当点P与点R重合时,
AP=BQ,8t﹣8=5t,t=
当0<t≤1时,如图③.

∵S BPM =S BQM
∴PM=QM.
∵AB∥QR,
∴∠PBM=∠QRM,∠BPM=∠MQR,
在△BPM和△RQM中

∴△BPM≌△RQM.
∴BP=RQ,
∵RQ=AB,
∴BP=AB
∴13t=13,
解得:t=1
当1<t≤ 时,如图④.

∵BR平分阴影部分面积,
∴P与点R重合.
∴t=
<t≤ 时,如图⑤.

∵S ABR =S QBR
∴S ABR <S 四边形BQPR
∴BR不能把四边形ABQP分成面积相等的两部分.
综上所述,当t=1或 时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.
(4)如图⑥,当P在A﹣D之间或D﹣A之间时,C′D′在BC上方且C′D′∥BC时,

∴∠C′OQ=∠OQC.
∵△C′OQ≌△COQ,
∴∠C′OQ=∠COQ,
∴∠CQO=∠COQ,
∴QC=OC,
∴50﹣5t=50﹣8(t﹣1)+13,或50﹣5t=8(t﹣1)﹣50+13,
解得:t=7或t=
当P在A﹣D之间或D﹣A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.

同理由菱形的性质可以得出:OD=PD,
∴50﹣5t+13=8(t﹣1)﹣50,
解得:t=
∴当t=7,t= ,t= 时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.
(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;
(2)分类讨论,当0<t<1时,当1<t< 时,根据三角形的面积公式分别求出S与t的函数关系
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消